Learn More
In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the(More)
We review in this article the influence of surface waves on the thermally excited electromagnetic field. We study in particular the field emitted at subwalength distances of material surfaces. After reviewing the main properties of surface waves, we introduce the fluctuation-dissipation theorem that allows to model the fluctuating electromagnetic fields. We(More)
A thermal light-emitting source, such as a black body or the incandescent filament of a light bulb, is often presented as a typical example of an incoherent source and is in marked contrast to a laser. Whereas a laser is highly monochromatic and very directional, a thermal source has a broad spectrum and is usually quasi-isotropic. However, as is the case(More)
Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 − 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a(More)
We measure the statistical distribution of the local density of optical states (LDOS) on disordered semicontinuous metal films. We show that LDOS fluctuations exhibit a maximum in a regime where fractal clusters dominate the film surface. These large fluctuations are a signature of surface-plasmon localization on the nanometer scale.
We analyze the spatial coherence of the electromagnetic field emitted by a half-space at temperature T close to the interface. An asymptotic analysis allows to identify three different contributions to the cross-spectral density tensor in the near-field regime. It is shown that the coherence length can be either much larger or much shorter than the(More)
  • Leila Yousefi, Amy C Foster, N L F Novotny, Van Hulst, G A G Curto, T H Volpe +122 others
  • 2012
We propose a novel optical hybrid plasmonic patch nano-antenna for operation at the standard telecommunication wavelength of 1550 nm. The nano-antenna is designed to be compatible with a hybrid plasmonic waveguide through matching of both the operational mode and the wave impedance. The antenna is designed to receive the optical signal from a planar(More)
We study the deviation from diffusion theory that occurs in the dynamic transport of light through thin scattering slabs. Solving numerically the time-dependent radiative transfer equation, we obtain the decay time and the effective diffusion coefficient Deff. We observe a nondiffusive behavior for systems whose thickness L is smaller than 8l(tr), where(More)
Using a Cramer-Rao analysis, we study the theoretical performances of a time and spatially resolved fDOT imaging system for jointly estimating the position and the concentration of a point-wide fluorescent volume in a diffusive sample. We show that the fluorescence lifetime is a critical parameter for the precision of the technique. A time resolved fDOT(More)
We review recent advances in the fundamental understanding and technological applications of radiative processes for energy harvesting, conversion, efficiency, and sustainability. State-of-the-art and remaining challenges are discussed, together with the latest developments outlined in the papers comprising this focus issue. The topics range from the(More)