Learn More
The mammalian epididymis provides sperm with an environment that promotes their maturation and protects them from external stresses. For example, it harbors an array of antioxidants, including non-conventional glutathione peroxidase 5 (GPX5), to protect them from oxidative stress. To explore the role of GPX5 in the epididymis, we generated mice that lack(More)
Gamete DNA integrity is one key parameter conditioning reproductive success as well as the quality of life for the offspring. In particular, damage to the male nucleus can have profound negative effects on the outcome of fertilization. Because of the absence of repair activity of the quiescent mature spermatozoa it is easily subjected to nuclear damage, of(More)
Mammalian spermatozoa undergo important plasma membrane maturation steps during epididymal transit. Among these, changes in lipids and cholesterol are of particular interest as they are necessary for fertilization. However, molecular mechanisms regulating these transformations inside the epididymis are still poorly understood. Liver X receptors (LXRs), the(More)
The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1) participates in this delicate local equilibrium. Using the mouse Ido1(-/-) model, we show here that the absence of IDO1 expression leads in(More)
The mammalian glutathione peroxidase (GPx) gene family encodes bifunctional enzymes that can work either as classical reactive oxygen species (ROS) scavengers or as thiol peroxidases, thereby introducing disulfide bridges in thiol-containing proteins. These dual effects are nowhere better demonstrated than in epididymal maturing spermatozoa, where the(More)
Using various molecular approaches, including reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends-PCR, sequencing, northern and western blotting, we found that the mouse GPX5 gene gives rise to at least three different transcripts that are not expressed at the same levels in the mouse epididymis. In addition to the(More)
Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme of tryptophan catabolism through the kynurenine pathway. Intriguingly, IDO is constitutively and highly expressed in the mammalian epididymis in contrast to most other tissues where IDO is induced by proinflammatory cytokines, such as interferons. To gain insight into the role of IDO in(More)
AIM To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism that are present in mammals as two isoforms: LXRalpha, which is more specifically expressed in lipid-metabolising tissues,(More)
Oxysterol nuclear receptors liver x receptors (LXRalpha and LXRbeta) regulate lipid homeostasis when cells have to face high amounts of cholesterol and/or fatty acids. Male mice invalidated for both lxr (LXR-/-) are infertile by 5 months of age, and become sterile by the age of 9 months. The epididymis was previously shown to be affected by the gene(More)
We report here that spermatozoa of mice lacking both the sperm nucleus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the(More)