Learn More
The extracellular matrix (ECM) of the embryonic heart guides assembly and maturation of cardiac cell types and, thus, may serve as a useful template, or blueprint, for fabrication of scaffolds for cardiac tissue engineering. Surprisingly, characterization of the ECM with cardiac development is scattered and fails to comprehensively reflect the(More)
To understand complex micro/nanoscale ECM stem cell interactions, reproducible in vitro models are needed that can strictly recapitulate the relative content and spatial arrangement of native tissue. Additionally, whole ECM proteins are required to most accurately reflect native binding dynamics. To address this need, we use multiphoton excited(More)
RATIONALE Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. OBJECTIVE Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and(More)
  • 1