Quintus G Medley

Learn More
LAR family transmembrane protein-tyrosine phosphatases function in axon guidance and mammary gland development. In cultured cells, LAR binds to the intracellular, coiled coil LAR-interacting protein at discrete ends of focal adhesions, implicating these proteins in the regulation of cell-matrix interactions. We describe seven LAR-interacting protein-like(More)
Focal adhesions are sites of cell-extracellular matrix interactions that function in anchoring stress fibers to the plasma membrane and in adhesion-mediated signal transduction. Both focal adhesion structure and signaling ability involve protein tyrosine phosphorylation. LAR is a broadly expressed transmembrane protein tyrosine phosphatase comprised of a(More)
Dbl-homology guanine nucleotide exchange factors (DH-GEFs) regulate actin cytoskeletal reorganization, cell adhesion, and gene transcription via activation of Rho GTPases. However, little is known about the physiological role of mammalian DH-GEFs during development. The DH-GEF family member Trio is of particular interest because it is a multifunctional(More)
Reorganization of the actin cytoskeleton is essential to numerous cellular processes including cell locomotion and cytokinesis. This actin remodeling is regulated in part by Rho family GTPases. Previous studies implicated Trio, a Dbl-homology guanine nucleotide exchange factor with two exchange factor domains, in regulating actin cytoskeleton(More)
Rho family GTPases regulate diverse cellular processes, including extracellular signal-mediated actin cytoskeleton reorganization and cell growth. The functions of GTPases are positively regulated by guanine nucleotide exchange factors, which promote the exchange of GDP for GTP. Trio is a complex protein possessing two guanine nucleotide exchange factor(More)
The LAR transmembrane tyrosine phosphatase associates with liprin-alpha proteins and colocalizes with liprin-alpha1 at focal adhesions. LAR has been implicated in axon guidance, and liprins are involved in synapse formation and synapse protein trafficking. Several liprin mutants have weaker binding to LAR as assessed by yeast interaction trap assays, and(More)
Cytotoxic lymphocytes are characterized by their inclusion of cytoplasmic granules that fuse with the plasma membrane following target cell recognition. We previously identified a cytotoxic granule membrane protein designated p15-TIA-1 that is immunochemically related to an RNA-recognition motif (RRM)-type RNA-binding protein designated p40-TIA-1. Although(More)
TIA-1 and TIAR are RNA binding proteins of the RNA recognition motif (RRM)/ribonucleoprotein (RNP) family that have been implicated as effectors of apoptotic cell death. We report the structures of murine TIA-1 and TIAR (mTIA-1 and mTIAR) deduced from cDNA cloning, the mRNA and protein tissue distribution of mTIA-1 and mTIAR, and the exon-intron structures(More)
Trio is a complex protein containing two guanine nucleotide exchange factor domains each with associated pleckstrin homology domains, a serine/threonine kinase domain, two SH3 domains, an immunoglobulin-like domain, and spectrin-like repeats. Trio was originally identified as a LAR tyrosine phosphatase-binding protein and is involved in actin remodeling,(More)
PURPOSE The concept of tissue-dependent cytokine hierarchy has been demonstrated in a number of diseases, but it has not been investigated in ophthalmic diseases. Here, we evaluated the functional hierarchy of interleukin-1β (IL-1β), IL-6, IL-17A, and tumor necrosis factor (TNF) in the induction of ocular inflammation. MATERIALS AND METHODS We delivered(More)