Learn More
This study investigated the contribution of low-frequency harmonics to identifying Mandarin tones in natural and vocoded speech in quiet and noisy conditions. Results showed that low-frequency harmonics of natural speech led to highly accurate tone identification; however, for vocoded speech, low-frequency harmonics yielded lower tone identification than(More)
In this paper, we assess the perceptual contributions of vowel versus consonant information to speech perception by unilateral and bilateral cochlear implant (CI) listeners. Consistent with the earlier results reported for normal hearing and hearing impaired listeners, vowels play a significantly more important role compared to consonants in the sentence(More)
This study assesses the effects of adding low- or high-frequency information to the band-limited telephone-processed speech on bimodal listeners' telephone speech perception in quiet environments. In the proposed experiments, bimodal users were presented under quiet listening conditions with wideband speech (WB), bandpass-filtered telephone speech(More)
This study assessed the effects of binaural spectral resolution mismatch on the intelligibility of Mandarin speech in noise using bilateral cochlear implant simulations. Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 0 and 5 dB signal-to-noise ratios, were presented unilaterally or bilaterally to normal-hearing listeners with mismatched(More)
The smearing effects of room reverberation can significantly impair the ability of cochlear implant (CI) listeners to understand speech. To ameliorate the effects of reverberation, current dereverberation algorithms focus on recovering the direct sound from the reverberated signal by inverse filtering the reverberation process. This contribution describes(More)
  • 1