Quanzi Yuan

Learn More
We present an approach for measuring the water flow rate through individual ultralong carbon nanotubes (CNTs) using field effect transistors array defined on individual tubes. Our work exhibits a rate enhancement of 882-51 and a slip length of 53-8 nm for CNTs with diameters of 0.81-1.59 nm. We also found that the enhancement factor does not increase(More)
Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug(More)
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-filled single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and(More)
A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular(More)
Molecular dynamics simulations were carried out to explore the capillary wave propagation induced by the competition between one upper precursor film (PF) on the graphene and one lower PF on the substrate in electro-elasto-capillarity (EEC). During the wave propagation, the graphene was gradually delaminated from the substrate by the lower PF. The physics(More)
Dynamic wetting on the flexible hydrophilic pillar-arrays is studied using large scale molecular dynamics simulations. For the first time, the combined effect of the surface topology, the intrinsic wettability and the elasticity of a solid on the wetting process is taken into consideration. The direction-dependent dynamics of both liquid and pillars,(More)
For the first time, the enhanced recovery of confined methane (CH4) with carbon dioxide (CO2) is investigated through molecular dynamics simulations. The adsorption energy and configuration of CH4 and CO2 on the carbon surface were compared, which shows that CO2 is a good candidate in displacing confined CH4. The energy barrier required for displacing CH4(More)
Density functional theorymolecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the(More)
We show by using molecular dynamics simulations that a water overlayer on charged graphene experiences first-order ice-to-liquid (electromelting), and then liquid-to-ice (electrofreezing) phase transitions with the increase of the charge value. Corresponding to the ice-liquid-ice transition, the variations of the order parameters indicate an(More)
Dissolutive wetting, i.e., dynamic wetting of a liquid droplet on dissolvable substrates, has been studied by molecular dynamics simulations. In dissolutive wetting, the geometry and properties of the solid-liquid interface evolve with the solid dissolving into the droplet; meanwhile, the droplet spreads on the receding solid surfaces. The droplets advance(More)