Learn More
This survey provides a structured and comprehensive overview of research on security and privacy in computer and communication networks that use game-theoretic approaches. We present a selected set of works to highlight the application of game theory in addressing different forms of security and privacy problems in computer networks and mobile applications.(More)
The advent of cloud computing promises to provide computational resources to customers like public utilities such as water and electricity. To deal with dynamically fluctuating resource demands, market-driven resource allocation has been proposed and recently implemented by public Infrastructure-as-a-Service (IaaS) providers like Amazon EC2. In this(More)
Large-scale online service providers have been increasingly relying on geographically distributed cloud infrastructures for service hosting and delivery. In this context, a key challenge faced by service providers is to determine the locations where service applications should be placed such that the hosting cost is minimized while key performance(More)
Data centers have recently gained significant popularity as a cost-effective platform for hosting large-scale service applications. While large data centers enjoy economies of scale by amortizing initial capital investment over large number of machines, they also incur tremendous energy cost in terms of power distribution and cooling. An effective approach(More)
Dynamic demand response (DR) management is becoming an integral part of power system and market operational practice. Motivated by the smart grid DR management problem, we propose a multi-resolution stochastic differential game-theoretic framework to model the players' intra-group and inter-group interactions in a large population regime. We study the game(More)
This paper considers a generalized framework to study OSNR optimization-based end-to-end link level power control problems in optical networks. We combine favorable features of game-theoretical approach and central cost approach to allow different service groups within the network. We develop solutions concepts for both cases of empty and nonempty feasible(More)
TD learning and its refinements are powerful tools for approximating the solution to dynamic programming problems. However, the techniques provide the approximate solution only within a prescribed finite-dimensional function class. Thus, the question that always arises is how should the function class be chosen? The goal of this paper is to propose an(More)
Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a(More)