Quanxin Na

  • Citations Per Year
Learn More
A method to measure orbital angular momentum (OAM) states of light beams by using gradually-changing-period gratings is reported. Two kinds of gradually-changing-period gratings were used for the measurement of OAM states. The OAM states of the incident beam can be measured easily from the Hermite-Gaussian-like diffraction patterns. The simulation results(More)
A method to construct spiral phase plates (SPPs) from quarter-wave plates and spatially variable half-wave plates (SVHWPs) is proposed. Optical vortices were experimentally generated by using SPPs made of polarization-dependent devices. The topological charge of the optical vortex can be also determined by the structure of the SVHWP and the polarization of(More)
A 2090 nm injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD is demonstrated in this paper. Single-frequency operation of Q-switched Ho:YAG ceramic laser is achieved by injection seeding technique. The maximum output energy of the single-frequency Q-switched Ho:YAG ceramic laser is 14.76 mJ, with a pulse width of 121.6 ns(More)
A single-frequency two-stage amplifier delivering up to 44 mJ at 2.1 μm is demonstrated. The first-stage amplifier is double-end-pumped by a 1.9 μm Tm:YLF laser, and is seeded with a 15 mJ single-frequency Ho:YAG laser operating at 200 Hz. The second-stage amplifier is end-pumped by another 1.9 μm Tm:YLF laser. The output pulse width from the second-stage(More)
In this paper, we report the experimental realization of a high-repetition-rate single-frequency Ho-doped yttrium aluminum garnet (Ho:YAG) ring laser at 2.09 μm. Single-frequency operation of the ring laser is achieved by injection-seeding with a continuous wave (CW) Ho:YAG non-planar ring oscillator (NPRO) laser. The output energy of the ring laser is 6.24(More)
We demonstrated a 2097 nm Ho:YAG ceramic master oscillator and power amplifier system pumped by Tm:YLF lasers. Laser characteristics of 0.6 at.% and 0.4 at.% Ho:YAG ceramics were studied in CW and Q-switched modes. An output energy of 20.6 mJ at a pulse repetition frequency of 200 Hz was achieved from the master oscillator. The pulse energy was amplified to(More)
We demonstrate a 2090 nm single-frequency, high-energy, Q-switched Ho:YAG ceramic master oscillator and power amplifier system that contains two-stage amplifiers. The maximum single-frequency pulse energy is 55.64 mJ at a pulse repetition frequency of 200 Hz. The half-width of the pulse spectrum is measured to be 3.96 MHz by a heterodyne technique. To the(More)
  • 1