Learn More
In recent years, a large number of heuristics have been proposed for the minimization of the total or mean flowtime/completion time of the well-known permutation flowshop scheduling problem. Although some literature reviews and comparisons have been made, they do not include the latest available heuristics and results are hard to compare as no common(More)
Flowshop scheduling is a very active research area. This problem still attracts a considerable amount of interest despite the sheer amount of available results. Total flowtime minimization of a flowshop has been actively studied and many effective algorithms have been proposed in the last few years. New best solutions have been found for common benchmarks(More)
This paper presents a hybrid Pareto-based discrete artificial bee colony algorithm for solving the multi-objective flexible job shop scheduling problem. In the hybrid algorithm, each solution corresponds to a food source, which composes of two components, i.e., the routing component and the scheduling component. Each component is filled with discrete(More)
In this paper, a novel discrete differential evolution (DDE) algorithm is presented to solve the permutation flowhop scheduling problem with the makespan criterion. The DDE algorithm is simple in nature such that it first mutates a target population to produce the mutant population. Then the target population is recombined with the mutant population in(More)
This paper presents a Differential Evolution algorithm with self-adaptive trial vector generation strategy and control parameters (SspDE) for global numerical optimization over continuous space. In the SspDE algorithm, each target individual has an associated strategy list (SL), a mutation scaling factor F list (FL), and a crossover rate CR list (CRL).(More)