Learn More
MicroRNAs (miRNAs) have been reported to be involved in DNA damage response induced by ionizing radiation (IR). c-Myc is reduced when cells treated with IR or other DNA damaging agents. It is unknown whether miRNAs participate in c-Myc downregulation in response to IR. In the present study, we found that miR-449a enhanced radiosensitivity in vitro and in(More)
The nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial regulator of the cellular antioxidant system. Nrf2 is often constitutively activated in non-small cell lung cancer (NSCLC) cell lines, which promotes cytoprotection against oxidative stress and xenobiotics. Notch1 signaling is critically implicated in cell fate determination. It has been(More)
miR-449a, a novel tumor suppressor, is deregulated in various malignancies, including prostate cancer. Overexpression of miR-449a induces cell cycle arrest, apoptosis, and senescence, but its role in response to ionizing radiation and underlying molecular mechanism are still unknown. Here, we report that miR-449a enhances radiation-induced G2/M phase arrest(More)
Diallyl disulfide (DADS), extracted from crushed garlic by steam-distillation, has been reported to provide the anticancer activity in several cancer types. However, the effect of DADS on high-LET carbon beams - induced cell death remains unknown. Therefore, we used human cervical cancer cells to elucidate the molecular effects of this diallyl sulfide.(More)
Nuclear factor E2 related factor 2 (Nrf2) is a transcription factor that is associated with tumor growth and resistance to radiation. The canonical Notch signaling pathway is also crucial for maintaining non-small cell lung cancer (NSCLC). Aberrant Nrf2 and Notch signaling has repeatedly been showed to facilitate metastasis of NSCLC. Here, we show that(More)
The toxicological mechanism of low sperm motility induced by iron ion radiation (IIR) was investigated in mice. Reproductive organ indices were measured following whole-body irradiation with a 2Gy iron ion beam. Two-dimensional gel electrophoresis, immunoblotting and immunofluorescence were used to analyze protein expression, and real-time polymerase chain(More)
High linear energy transfer (LET) carbon ion beam (CIB) is becoming the best tool for external radiotherapy of inoperable tumors because of its greater cell killing than conventional low LET gamma or X-rays. In the present study, whether the caspase-independent pathway exerts the important contribution in CIB-induced cell apoptosis was explored. Herein we(More)
We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal(More)
During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is(More)
The phenomenon has raised the concerns about the safety of an extended manned mission into deep space due to the high potential for exposure to high-LET radiation during space missions. Heavy ions such as (56)Fe are main radiation sources in deep space, which could pose a significant hazard to space flight crews during and after missions. Since the testis(More)