Qiuhang Zhong

Learn More
An in situ birefringence measurement in conjunction with an atomic force microscope study shows that the geometric asymmetry of the side-writing process is a major cause of the induced birefringence in grating-based fiber devices. Measured refractive-index profiles of UV-exposed fibers clearly show the asymmetry in the induced index change. We demonstrate(More)
We report on the design and characterization of focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces. With implementation of waveguide dispersion engineered subwavelength structures, an ultra-wide 1-dB bandwidth of over 100 nm (largest reported to date) near 1550 nm is experimentally achieved for(More)
We present the detailed analysis and characterization of a silicon Michelson modulator with short 500 μm phase shifters and a low VπLπ of 0.72 V-cm under reverse bias. We investigate optical modulation of reverse biased p-n and forward biased p-i-n junctions. We demonstrate for the first time that error-free operation up to 40 Gbps is possible with lumped(More)
We report on theoretical and experimental investigation of azimuthal and longitudinal modes in rolled-up microtubes at telecom wavelengths. These microtubes are fabricated by selectively releasing a coherently strained InGaAs/GaAs bilayer. We apply planar waveguide method and a quasi-potential model to analyze the azimuthal and longitudinal modes in the(More)
We report on the first experimental demonstration of the thermal control of coupling strength between a rolled-up microtube and a waveguide on a silicon electronic-photonic integrated circuit. The microtubes are fabricated by selectively releasing a coherently strained GaAs/InGaAs heterostructure bilayer. The fabricated microtubes are then integrated with(More)
We report a silicon photonic modulator based on a Mach–Zehnder interferometer (MZI) loaded with a microring modulator (MRM) on one arm and a microring resonator (MRR) on the other arm. The device is operated with the resonances of the MRM and the MRR overlapped to improve the extinction ratios and the optical modulation amplitudes. The operating principle(More)
  • 1