Qiufeng Wang

Learn More
Carbon (C) and water cycles of terrestrial ecosystems are two coupled ecological processes controlled partly by stomatal behavior. Water-use efficiency (WUE) reflects the coupling relationship to some extent. At stand and ecosystem levels, the variability of WUE results from the trade-off between water loss and C gain in the process of plant photosynthetic(More)
Atmospheric nitrogen (N) deposition, an important component in the global N cycle, has increased sharply in recent decades in China. Here, we constructed national-scale inorganic N wet deposition (Ndep) patterns in China based on data from 280 observational sites and analysed the effects of anthropogenic sources and precipitation on Ndep. Our results showed(More)
Atmospheric nitrogen (N) deposition is an important component of the global N cycle, and is a key source of biologically available N. Understanding the spatio-temporal patterns and influencing factors of N deposition is essential to evaluate its ecological effects on terrestrial ecosystems, and to provide a scientific basis for global change research. In(More)
Understanding the geographic patterns and potential drivers of leaf stoichiometry is critical for modelling the nutrient fluxes of ecosystems and to predict the responses of ecosystems to global changes. This study aimed to explore the altitudinal patterns and potential drivers of leaf C∶N∶P stoichiometry. We measured the concentrations of leaf C, N and P(More)
Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20 °N and(More)
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring(More)
Understanding the variation in stomatal characteristics in relation to climatic gradients can reveal the adaptation strategies of plants, and help us to predict their responses to future climate changes. In this study, we investigated stomatal density (SD) and stomatal length (SL) in 150 plant species along an elevation gradient (540-2357 m) in Changbai(More)
Evapotranspiration (ET) is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in(More)
We selected four sites of ChinaFLUX representing four major ecosystem types in China—Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)—to study the seasonal dynamics of ecosystem water use efficiency (WUE =(More)
The 4977 bp common deletion is one of the most frequently observed mitochondrial DNA (mtDNA) mutations in human tissues and has been implicated in various human cancer types. It is generally believed that continuous generation of intracellular reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS) is a major underlying mechanism for(More)