Learn More
Carbon (C) and water cycles of terrestrial ecosystems are two coupled ecological processes controlled partly by stomatal behavior. Water-use efficiency (WUE) reflects the coupling relationship to some extent. At stand and ecosystem levels, the variability of WUE results from the trade-off between water loss and C gain in the process of plant photosynthetic(More)
Atmospheric nitrogen (N) deposition, an important component in the global N cycle, has increased sharply in recent decades in China. Here, we constructed national-scale inorganic N wet deposition (Ndep) patterns in China based on data from 280 observational sites and analysed the effects of anthropogenic sources and precipitation on Ndep. Our results showed(More)
Understanding the geographic patterns and potential drivers of leaf stoichiometry is critical for modelling the nutrient fluxes of ecosystems and to predict the responses of ecosystems to global changes. This study aimed to explore the altitudinal patterns and potential drivers of leaf C∶N∶P stoichiometry. We measured the concentrations of leaf C, N and P(More)
Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20 °N and(More)
Atmospheric nitrogen (N) deposition is an important component of the global N cycle, and is a key source of biologically available N. Understanding the spatio-temporal patterns and influencing factors of N deposition is essential to evaluate its ecological effects on terrestrial ecosystems, and to provide a scientific basis for global change research. In(More)
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring(More)
Understanding the variation in stomatal characteristics in relation to climatic gradients can reveal the adaptation strategies of plants, and help us to predict their responses to future climate changes. In this study, we investigated stomatal density (SD) and stomatal length (SL) in 150 plant species along an elevation gradient (540-2357 m) in Changbai(More)
We selected four sites of ChinaFLUX representing four major ecosystem types in China—Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)—to study the seasonal dynamics of ecosystem water use efficiency (WUE =(More)
Quantification of the spatiotemporal pattern of soil respiration (R(s)) at the regional scale can provide a theoretical basis and fundamental data for accurate evaluation of the global carbon budget. This study summarizes the R(s) data measured in China from 1995 to 2004. Based on the data, a new region-scale geostatistical model of soil respiration (GSMSR)(More)
To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific(More)