Learn More
Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction(More)
Nephroblastoma overexpressed (NOV) is a member of the CCN family (connective tissue growth factor, CYR61, and NOV) of proteins that are involved in regulating the proliferation, differentiation, and adhesion of a variety of cell types. We have examined the expression of the NOV: gene and NOV protein by vascular smooth muscle cells (VSMCs), in vitro and in(More)
AIMS We have recently reported that microRNA-34a (miR-34a) regulates vascular smooth muscle cell (VSMC) differentiation from stem cells in vitro and in vivo. However, little is known about the functional involvements of miR-34a in VSMC functions and vessel injury-induced neointima formation. In the current study, we aimed to establish the causal role of(More)
OBJECTIVE In this study, we attempted to uncover the functional impact of microRNA-22 (miR-22) and its target gene in smooth muscle cell (SMC) differentiation and delineate the molecular mechanism involved. APPROACH AND RESULTS miR-22 was found to be significantly upregulated during SMC differentiation from embryonic stem cells and adventitia(More)
Embryonic stem cells (ES cells), the pluripotent derivatives of the inner cell mass from blastocysts, have the capacity for unlimited growth, self-renewal and differentiation toward all types of somatic cells. Angiotensin II (Ang II), the most important effector peptide of the renin-angiotensin system, is also an angiogenesis factor. However, the potential(More)
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and(More)
BACKGROUND MicroRNA miR-214 has been implicated in many biological cellular functions, but the impact of miR-214 and its target genes on vascular smooth muscle cell (VSMC) proliferation, migration, and neointima smooth muscle cell hyperplasia is unknown. METHODS AND RESULTS Expression of miR-214 was closely regulated by different pathogenic stimuli in(More)
Matrix metalloproteinase-8 (MMP8) has been shown to influence various cellular functions. As monocytes and macrophages (Mφ) express MMP8, we investigated if MMP8 played a role in macrophage differentiation and polarization. MMP8 expression was significantly increased during monocyte differentiation into Mφ. Monocyte-derived Mφ from MMP8-deficient mice(More)
ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS(More)
A novel energetic heat-resistant explosive, 1-(3,5-dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT), has been synthesized along with its salts. An intensive characterization of the compounds is given, including (1)H and (13)C NMR spectroscopy, IR spectroscopy, and elemental analysis. The crystal structures of neutral HCPT (3), its(More)