We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and(More)
Engineered particles adsorb biomolecules (e.g., proteins) when introduced in a biological medium to form a layer called a "corona". Coronas, in particular the protein corona, play an important role in determining the surface properties of particles and their targeting abilities. This study examines the influence of protein coronas on the targeting ability(More)
Particle stiffness is emerging as an important parameter in determining the cell uptake dynamics of particles. Understanding the effects of capsule stiffness on their biological behavior is essential for the development of polymer capsules as therapeutic carriers. Herein, we report the preparation of polysaccharide capsules via atom transfer radical(More)
Particles adsorb proteins when they enter a physiological environment; this results in a surface coating termed a "protein corona". A protein corona can affect both the properties and functionalities of engineered particles. Here, we prepared hyaluronic acid (HA)-based capsules through the assembly of metal-phenolic networks (MPNs) and engineered their(More)
  • 1