Learn More
[1] Following an El Niño event, a basin-wide warming takes place over the tropical Indian Ocean, peaks in late boreal winter and early spring, and persists through boreal summer. Our observational analysis suggests that this Indian Ocean warming induces robust climatic anomalies in the summer Indo-West Pacific region, prolonging the El Niño’s influence(More)
Low-frequency modulation and change under global warming of the Indian Ocean dipole (IOD) mode are investigated with a pair of multicentury integrations of a coupled ocean–atmosphere general circulation model: one under constant climate forcing and one forced by increasing greenhouse gas concentrations. In the unforced simulation, there is significant(More)
[1] The Indo-Pacific warm water pool in boreal winter shows a conspicuous gap over the South China Sea (SCS) where sea surface temperature (SST) is considerably lower than over the oceans both to the west and east. The formation mechanisms for the climatology and interannual variability of SCS SST in boreal winter are investigated using a suite of new(More)
[1] Observational analysis and model experiments show that the sea surface temperature anomaly associated with the Indian Ocean Basin mode (IOBM), which persists from spring to summer, can generate significant circumglobal teleconnection (CGT) in the Northern Hemisphere summer midlatitude atmosphere. A warm IOBM can induce a new atmospheric heating source(More)
Decadal variability in the interior subtropical North Pacific is examined in the Geophysical Fluid Dynamics Laboratory coupled model (CM2.1). Superimposed on a broad, classical subtropical gyre is a narrow jet called the subtropical countercurrent (STCC) that flows northeastward against the northeast trade winds. Consistent with observations, the STCC is(More)
[1] To investigate the observed atmospheric response to SST variability in the North Pacific, the Maximum Covariance Analysis is performed between the monthly sea surface temperature anomaly (SSTA) and the 500-hPa geopotential height anomaly over the North Pacific using observations of the period 1958–1993. In addition to the strong remote ENSO impact in(More)
The response of the Indian Ocean dipole (IOD) mode to global warming is investigated based on simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to increased greenhouse gases, an IOD-like warming pattern appears in the equatorial Indian Ocean, with reduced (enhanced) warming in the east (west), an easterly wind trend,(More)
El Niño’s influence on the subtropical northwest (NW) Pacific climate increased after the climate regime shift of the 1970s. This is manifested in well-organized atmospheric anomalies of suppressed convection and a surface anticyclone during the summer (June–August) of the El Niño decay year [JJA(1)], a season when equatorial Pacific sea surface temperature(More)
Seasonal and intraseasonal variability of thermocline and relative surface height in the central South China Sea (SCS) are investigated using time series data of temperature from three buoys and sea surface height anomaly data from TOPEX/POSEIDON and ERS-1/ERS-2 satellites (T/P-ERS) from Feb. 1998 through Mar. 1999. We found that the thermocline becomes(More)
El Niño–Southern Oscillation (ENSO) induces climate anomalies around the globe. Atmospheric general circulation model simulations are used to investigate how ENSO-induced teleconnection patterns during boreal winter might change in response to global warming in the Pacific–North American sector. As models disagree on changes in the amplitude and spatial(More)