Qinwei Xu

Learn More
—This paper introduces an efficient and passive discrete modeling technique for estimating signal propagation delays through on-chip long interconnects that are represented as distributed RLC transmission lines. The proposed delay model is based on a less frequently used numerical approximation technique, called the differential quadrature method (DQM). The(More)
This paper proposes an efficient numerical approximation technique, called the Finite Difference Quadrature (FDQ) Method, which has been adapted to model transmission lines (TL's) with external EM wave coupling. The finite difference quadrature method can quickly compute <i>finite differences</i> between adjacent grid points by estimating a weighted linear(More)
—This paper discusses an efficient numerical approximation technique, called the differential quadrature method (DQM), which has been adapted to model lossy uniform and nonuniform transmission lines. The DQM can quickly compute the derivative of a function at any point within its bounded domain by estimating a weighted linear sum of values of the function(More)
—This paper proposes an efficient numerical technique, called the finite difference quadrature (FDQ) method, to model the transmission line with radiated electromagnetic (EM) wave noise coupling. A discrete modeling approach, the FDQ method adapts coarse grid points along the transmission line to compute the finite difference between adjacent grid points. A(More)
The high-order compact finite difference (HCFD) method is adapted for interconnect modeling. Based on the compact finite difference method, the HCFD method employs the Chebyshev polynomials to construct the approximation framework for interconnect discretization, and leads to improved equivalent-circuit models. The HCFD-based modeling requires far fewer(More)
This paper introduces a new transmission line modeling approach that employs an efficient numerical approximation technique called the Differential Quadrature Method (DQM). The transmission line has been discretized and the approximation framework is constructed by using the 5th order differential quadrature method, consequently an improved discrete(More)
This paper presents an efficient approach to compute the dominantpoles for the reduced-order admittance (Y parameter)matrix of lossy interconnects. Using the global approximationtechnique, the efficient frameworks are constructed totransform the frequency-domain Telegrapher's equations intocompact linear algebraic equations. The dominant poles andresidues(More)