Learn More
Excitotoxicity, a form of neuronal injury in which excessive activation of glutamate receptors results in cellular calcium overload, has been implicated in the pathogenesis of Alzheimer disease (AD), although direct evidence is lacking. Mutations in the presenilin-1 (PS1) gene on chromosome 14 are causally linked to many cases of early-onset inherited AD(More)
The cerebellum is essential for fine motor control of movement and posture, and its dysfunction disrupts balance and impairs control of speech, limb and eye movements. The developing cerebellum consists mainly of three types of neuronal cells: granule cells in the external germinal layer, Purkinje cells, and neurons of the deep nuclei. The molecular(More)
Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer's disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to(More)
Most autosomal dominant inherited forms of early onset Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS-1) gene on chromosome 14. PS-1 is an integral membrane protein with six to nine membrane-spanning domains and is expressed in neurons throughout the brain wherein it is localized mainly in endoplasmic reticulum (ER). The mechanism(More)
Mutations in the presenilin-1 (PS-1) gene on chromosome 14 are linked to autosomal dominant early-onset Alzheimer's disease. The amino acid sequence of PS-1 predicts an integral membrane protein and immunocytochemical studies indicate that PS-1 is localized to endoplasmic reticulum (ER). We report that expression of PS-1 mutation L286V in cultured PC12(More)
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which(More)
Prostate apoptosis response-4 (Par-4) is a protein containing both a leucine zipper and a death domain that was isolated by differential screening for genes upregulated in prostate cancer cells undergoing apoptosis. Par-4 is expressed in the nervous system, where its function is unknown. In Alzheimer disease (AD), neurons may die by apoptosis, and amyloid(More)
Oxytocin, a neurohypophyseal hormone, has been traditionally considered essential for mammalian reproduction. In addition to uterine contractions during labor and milk ejection during nursing, oxytocin has been implicated in anterior pituitary function, paracrine effects in the testis and ovary and the neural control of maternal and sexual behaviors. To(More)
The protooncogene MYC plays an important role in the regulation of cellular proliferation, differentiation, and apoptosis and has been implicated in a variety of human tumors. MYC and the closely related MYCN encode highly conserved nuclear phosphoproteins (Myc and NMyc) that apparently function as transcription factors in the cell. We have identified a(More)
Mutations in the presenilin 1 (PS-1) gene account for many cases of early-onset autosomal dominant inherited forms of Alzheimer's disease. Recent findings suggest that PS-1 mutations may sensitize neurons to apoptosis induced by trophic factor withdrawal and exposure to amyloid beta-peptide (Abeta). We now report that overexpression of the calcium-binding(More)