Qingnan Hu

  • Citations Per Year
Learn More
Aux/IAA proteins are transcriptional repressors that control auxin signaling by interacting with auxin response factors (ARFs). So far all of the identified Aux/IAA mutants with auxin-related phenotypes in Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants, with mutations in Domain II that affected stability of the corresponding(More)
In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins(More)
Single-repeat R3 MYB transcription factors (R3 MYBs) regulate epidermal cell fate determination in Arabidopsis through a lateral inhibition mechanism. Previously we have shown that poplar R3 MYB genes regulate trichome formation when expressed in Arabidopsis. Here we report the identification and functional characterization of a poplar R3 MYB-like protein,(More)
Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the(More)
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a(More)
  • 1