Learn More
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat. Here we report a 110-Mb draft sequence of Pst isolate CY32, obtained using a 'fosmid-to-fosmid' strategy, to better understand its race evolution and pathogenesis. The Pst genome is highly heterozygous and contains 25,288 protein-coding genes.(More)
b-1,3-Glucanases are a group of pathogenesis related proteins that have been reported to be involved in plant defense against pathogens in many other plant pathogen systems. However, it was not clear if these genes play similar role in wheat (Triticum aestivum L.) against Puccinia striiformis f. sp. tritici (Pst), the stripe rust pathogen. To investigate(More)
BACKGROUND Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Due to special features of hexaploid wheat with large and complex genome and difficulties for transformation, and of Pst without sexual reproduction and hard to culture on media, the use of most genetic and(More)
BACKGROUND Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known(More)
Pathogenesis-related (PR) proteins, induced in plants in response to various biotic and abiotic stresses, have been assumed to play a role in plant defense system. Proteins of the PR5 family, also named thaumatin-like proteins (TLPs), have been detected in numerous plant species. In this research, a novel PR5 gene, designated as TaPR5, was isolated and(More)
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. To isolate defense-related genes against the pathogen, a suppression subtractive hybridization library was constructed for an incompatible interaction. From the library, 652 sequences were determined to be unigenes, of which 31 were(More)
Non-host resistance (NHR) confers plant species immunity against the majority of microbes. As an important crop, wheat can be damaged by several Puccinia species but is immune to all Uromyces species. Here, we studied the basis of NHR in wheat against the broad bean rust pathogen Uromyces fabae (Uf). In the wheat-Uf interaction, microscopic observations(More)
Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage,(More)
Plant reoviruses are thought to replicate and assemble within cytoplasmic, nonmembranous structures called viroplasms. Here, we established continuous cell cultures of the white-backed planthopper (Sogatella furcifera Horváth) to investigate the mechanisms for the genesis and maturation of the viroplasm induced by Southern rice black-streaked dwarf virus(More)
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. We report the use of the non-host plant Arabidopsis thaliana to identify the basis of resistance to Pst at the cytological and molecular levels. No visible symptoms were observed on Arabidopsis leaves inoculated with Pst.(More)