Qinglin Huang

Learn More
In situ formation of the micro- and mesoporous structures of SBA-15 materials was investigated. It was found that the structure is significantly different from that for cylindrical or hexagonal pores, which suggests that the SBA-15 is more complex than an array of hexagonally ordered channels. Nitrogen adsorption isotherms at 77 K provided evidence that(More)
In our recent studies (Vinh-Thang, H.; Huang, Q.; Eic, M.; Trong-On, D.; Kaliaguine, S. Langmuir 2005, 21, 2051-2057; Vinh-Thang, H.; Huang, Q.; Eic, M.; Trong-On, D.; Kaliaguine, S. Stud. Surf. Sci. Catal. 2005, in press), a series of synthesized SBA-15 materials were characterized using nitrogen adsorption/desorption isotherms at 77 K and SEM images. In(More)
1. Introduction Mesoporous UL-ZSM-5 materials have zeolitic structure in the form of nano-particles inter-grown in the walls of the amorphous wormhole-like aluminosilicate mesoporous precursor, and were shown to exhibit an intermediate acidity between the parent mesoporous precursor and ZSM-5 zeolite [1,2]. These materials combine the advantages of both,(More)
We present the first 13C magnetic resonance imaging study of CO2 transient adsorption/desorption processes in a zeolite 5A column. CO2 transient concentration profiles were measured with a centric scan spin-echo single point imaging technique. The adsorption wave profiles were determined under flow conditions, with the results analyzed by the Bohart-Adams(More)
A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic(More)
  • 1