Learn More
The corepressor CtBP (carboxyl-terminal binding protein) is involved in transcriptional pathways important for development, cell cycle regulation, and transformation. We demonstrate that CtBP binding to cellular and viral transcriptional repressors is regulated by the nicotinamide adenine dinucleotides NAD+ and NADH, with NADH being two to three orders of(More)
Genetic knockout of the transcriptional corepressor CtBP in mouse embryo fibroblasts upregulates several genes involved in apoptosis. We predicted, therefore, that a propensity toward apoptosis might be regulated through changes in cellular CtBP. To identify pathways involved in this regulation, we screened a mouse embryo cDNA library with an E1A-CtBP(More)
We have analyzed the expression and intracellular distribution, during oogenesis and embryogenesis, of Vg1 RBP, a protein implicated in the intracellular localization of Vg1 mRNA to the vegetal cortex of Xenopus oocytes. Vg1 RBP (protein) colocalizes with Vg1 RNA at all stages of oogenesis. Vg1 RBP RNA, however, localizes to the animal pole during late(More)
The rapid growth and poor vascularization of solid tumors expose cancer cells to hypoxia, which promotes the metastatic phenotype by reducing intercellular adhesion and increasing cell motility and invasiveness. In this study, we found that hypoxia increased free NADH levels in cancer cells, promoting CtBP recruitment to the E-cadherin promoter. This effect(More)
Liver X receptors (LXRalpha and -beta) are nuclear receptors abundant in the liver where they are regulators of lipid homeostasis. Both LXRs are also expressed in the brain, but their roles in this tissue remain to be clarified. We examined the brains of mice in which the genes of both LXRalpha and -beta have been disrupted and found several severe(More)
Homeodomain-interacting protein kinase-2 (HIPK2) is a serine/threonine kinase involved in transcriptional regulation and apoptosis. The transcriptional corepressor CtBP (carboxyl-terminal binding protein) also plays a fundamental role in these processes. Our previous studies indicate that HIPK2 participates in a pathway of UV-triggered CtBP clearance that(More)
Genetic knock out of the transcriptional co-repressor carboxyl-terminal-binding protein (CtBP) in mouse embryonic fibroblasts results in up-regulation of several genes involved in apoptosis. We predicted, therefore, that a propensity toward apoptosis might be regulated through changes in cellular CtBP levels. Previously, we have identified the(More)
Carboxyl-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor with oncogenic potential. Immunohistochemistry staining using human breast cancer tissue arrays revealed that 92% of invasive ductal breast cancer cases have CtBP1-positive staining compared to 4% CtBP1-positive in normal breast tissue. To explore the functional impact of CtBP1 in(More)
Carboxyl-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor that represses expression of various tumor suppressor genes. In the present study, we identified miR-137 as a potential regulator of CtBP1 expression in melanoma cells. Expression of miR-137 in melanoma cell lines was found to inversely correlate with CtBP1 levels. Target Scan(More)
The genesis of carcinoma cells often involves epithelial-to-mesenchymal transitions and the acquisition of apoptosis resistance, but it is unclear whether these alterations are controlled coordinately or independently. Our previously reported effects of adenovirus E1a in human tumor cells raised the possibility that the E1a-interacting corepressor protein(More)