Learn More
Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resistance (SAR). SAR is induced upon primary infection and(More)
Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling component Enhanced Disease Susceptibility1 function redundantly(More)
Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a(More)
Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the(More)
Glycerol-3-phosphate (G3P), a conserved three-carbon sugar, is an obligatory component of energy-producing reactions including glycolysis and glycerolipid biosynthesis. G3P can be derived via the glycerol kinase-mediated phosphorylation of glycerol or G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate. Previously, we showed G3P(More)
Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant(More)
Systemic acquired resistance (SAR), initiated by a plant upon recognition of microbial effectors, involves generation of a mobile signal at the primary infection site, which translocates to and activates defense responses in distal tissues via unknown mechanism(s). We find that an acyl carrier protein, ACP4, is required to perceive the mobile SAR signal in(More)
Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents(More)
Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and(More)
The plant galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO). Here, we show that DGDG contributes to plant NO as well as salicylic(More)
  • 1