Learn More
The Guideline Interchange Format (GLIF) is a model for representation of sharable computer-interpretable guidelines. The current version of GLIF (GLIF3) is a substantial update and enhancement of the model since the previous version (GLIF2). GLIF3 enables encoding of a guideline at three levels: a conceptual flowchart, a computable specification that can be(More)
The Guideline Interchange Format (GLIF) is a language for structured representation of guidelines. It was developed to facilitate sharing clinical guidelines. GLIF version 2 enabled modeling a guideline as a flowchart of structured steps, representing clinical actions and decisions. However, the attributes of structured constructs were defined as text(More)
Several studies have found that consumers report a high level of satisfaction with the Internet as a health information resource. Belied by this positive attitude, however, are other studies reporting that consumers were often unsuccessful in searching for health information. In this paper, we present an interview and observation study in which we asked(More)
We have developed several prototype applications which integrate clinical systems with on-line information resources by using patient data to drive queries in response to user information needs. We refer to these collectively as infobuttons because they are evoked with a minimum of keyboard entry. We make use of knowledge in our terminology, the Medical(More)
InterMed is a collaboration among research groups from Stanford, Harvard, and Columbia Universities. The primary goal of InterMed has been to develop a sharable language that could serve as a standard for modeling computer-interpretable guidelines (CIGs). This language, called GuideLine Interchange Format (GLIF), has been developed in a collaborative manner(More)
In a pilot effort to improve health communication we created a method for measuring the familiarity of various medical terms. To obtain term familiarity data, we recruited 21 volunteers who agreed to take medical terminology quizzes containing 68 terms. We then created predictive models for familiarly based on term occurrence in text corpora and reader's(More)
We describe our work on creating a system that selects appropriate clinical trials by automating the evaluation of eligibility criteria. We developed a data model of eligibility for breast cancer clinical trials, upon which the criteria were encoded. Standard vocabularies are utilized to represent concepts used in the system, and retrieve their hierarchical(More)
We have developed the GLIF3 Guideline Execution Engine (GLEE) as a tool for executing guidelines encoded in the GLIF3 format. In addition to serving as an interface to the GLIF3 guideline representation model to support the specified functions, GLEE provides defined interfaces to electronic medical records (EMRs) and other clinical applications to(More)
Clinical guidelines are being developed for the purpose of reducing medical errors and unjustified variations in medical practice, and for basing medical practice on evidence. Encoding guidelines in a computer-interpretable format and integrating them with the electronic medical record can enable delivery of patient-specific recommendations when and where(More)
We have developed a systematic methodology using corpus-based text analysis followed by human review to assign "consumer-friendly display (CFD) names" to medical concepts from the National Library of Medicine (NLM) Unified Medical Language System (UMLS) Metathesaurus. Using NLM MedlinePlus queries as a corpus of consumer expressions and a collaborative(More)