Qing-Song Xu

Learn More
The identification of interactions between drugs and target proteins plays a key role in genomic drug discovery. In the present study, the quantitative binding affinities of drug-target pairs are differentiated as a measurement to define whether a drug interacts with a protein or not, and then a chemogenomics framework using an unbiased set of general(More)
Wavelength selection is a critical step for producing better prediction performance when applied to spectral data. Considering the fact that the vibrational and rotational spectra have continuous features of spectral bands, we propose a novel method of wavelength interval selection based on random frog, called interval random frog (iRF). To obtain all the(More)
Nowadays, with a high dimensionality of dataset, it faces a great challenge in the creation of effective methods which can select an optimal variables subset. In this study, a strategy that considers the possible interaction effect among variables through random combinations was proposed, called iteratively retaining informative variables (IRIV). Moreover,(More)
Drugtarget interactions (DTIs) are central to current drug discovery processes. Efforts have been devoted to the development of methodology for predicting DTIs and drugtarget interaction networks. Most existing methods mainly focus on the application of information about drug or protein structure features. In the present work, we proposed a computational(More)
Biological variables involved in a disease process often correlate with each other through for example shared metabolic pathways. In addition to their correlation, these variables contain complementary information that is particularly useful for disease classification and prediction. However, complementary information between variables is rarely explored.(More)
  • 1