Learn More
Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma(More)
Malignant gliomas are highly lethal cancers dependent on angiogenesis. Critical tumor subpopulations within gliomas share characteristics with neural stem cells. We examined the potential of stem cell-like glioma cells (SCLGC) to support tumor angiogenesis. SCLGC isolated from human glioblastoma biopsy specimens and xenografts potently generated tumors when(More)
Glioblastomas are lethal cancers characterized by florid angiogenesis promoted in part by glioma stem cells (GSCs). Because hypoxia regulates angiogenesis, we examined hypoxic responses in GSCs. We now demonstrate that hypoxia-inducible factor HIF2alpha and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to non-stem tumor(More)
Hedgehog transduces signal by promoting cell surface expression of the seven-transmembrane protein Smoothened (Smo) in Drosophila, but the underlying mechanism remains unknown. Here we demonstrate that Smo is downregulated by ubiquitin-mediated endocytosis and degradation, and that Hh increases Smo cell surface expression by inhibiting its ubiquitination.(More)
We employed a genetically defined human cancer model to investigate the contributions of two genes up-regulated in several cancers to phenotypic changes associated with late stages of tumorigenesis. Specifically, tumor cells expressing two structurally unrelated bone-related genes, osteonectin and osteoactivin, acquired a highly invasive phenotype when(More)
Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in(More)
In normal epithelial tissues, the multifunctional cytokine transforming growth factor-beta (TGF-beta) acts as a tumor suppressor through growth inhibition and induction of differentiation whereas in advanced cancers, TGF-beta promotes tumor progression through induction of tumor invasion, neoangiogenesis, and immunosuppression. The molecular mechanisms(More)
Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+(More)
NaChBac, a six-alpha-helical transmembrane-spanning protein cloned from Bacillus halodurans, is the first functionally characterized bacterial voltage-gated Na(+)-selective channel. As a highly expressing ion channel protein, NaChBac is an ideal candidate for high resolution structural determination and structure-function studies. The biological role of(More)
The Cul3-based E3 ubiquitin ligases regulate many cellular processes using a large family of BTB domain-containing proteins as their target recognition components, but how they recognize targets remains unknown. Here we identify and characterize degrons that mediate the degradation of the Hedgehog pathway transcription factor cubitus interruptus (Ci)/Gli by(More)