Learn More
Neuronal arborization is regulated by cell-autonomous and nonautonomous mechanisms including endosomal signaling via BDNF/TrkB. The endosomal Na⁺/H⁺ exchanger 6 (NHE6) is mutated in a new autism-related disorder. NHE6 functions to permit proton leak from endosomes, yet the mechanisms causing disease are unknown. We demonstrate that loss of NHE6 results in(More)
Large conductance Ca(2+)-activated potassium (BK) channels play important roles in controlling neuronal excitability. We cloned the PISlo gene encoding BK channels from the spiny lobster, Panulirus interruptus. This gene shows 81-98% sequence identity to Slo genes previously found in other organisms. We isolated a number of splice variants of the PISlo cDNA(More)
Pathogenic pain is a common sign of many diseases. The mechanism is unclear. Activating transcription factor 4 (ATF4) plays a critical role in cell activation. Brain-derived neurotrophic factor (BDNF) is an important molecule in pathogenic pain. This study aims to investigate the role of ATF4 in inducing BDNF release from microglial cells. In this study,(More)
To investigate the role of HIF-1α genetic polymorphism of c.1772C>T and c.1790G>A in the incidence and prognosis of gliomas in a Chinese cohort, a total of 387 gliomas patients and 437 age- and sex-matched healthy controls were recruited. The genetic polymorphism of c.1772C>T and c.1790G>A was determined. We found that the genotype distribution at c.1772C>T(More)
Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release(More)
The poor prognosis and minimally successful treatments of malignant glioma indicate a challenge to identify new therapeutic targets which impact glioma progression. Neurotensin (NTS) and its high affinity receptor (NTSR1) overexpression induces neoplastic growth and predicts the poor prognosis in various malignancies. Whether NTS can promote the glioma(More)
  • 1