Learn More
Four group II introns were found in an unusually intron-rich dnaN gene (encoding the beta subunit of DNA polymerase III) of the cyanobacterium Trichodesmium erythraeum, and they have strong similarities to two introns of the RIR gene (encoding ribonucleotide reductase) of the same organism. Of these six introns, only the RIR-3 intron encodes a maturase(More)
Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders and a leading cause of female subfertility. The mechanism underlying the pathophysiology of PCOS remains to be illustrated. Here, we identify two alternative splice variants (ASVs) of the androgen receptor (AR), insertion and deletion isoforms, in granulosa cells (GCs) in(More)
The mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here(More)
Inteins catalyze a protein splicing reaction to excise the intein from a precursor protein and join the flanking sequences (exteins) with a peptide bond. In a split intein, the intein fragments (I(N) and I(C)) can reassemble non-covalently to catalyze a trans-splicing reaction that joins the exteins from separate polypeptides. An atypical split intein(More)
Self-cleaving elastin-like protein (ELP) tags provide a very promising tool for recombinant protein purification. With this method, the target protein is purified by simple ELP-mediated precipitation steps, followed by self-cleavage and removal of the ELP tag. Unfortunately, however, inteins usually experience some level of pre-cleavage during protein(More)
Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we(More)
Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate(More)
Spider silk is one of nature's most remarkable biomaterials due to extraordinary strength and toughness not found in today's synthetic materials. Of the seven types of silk, wrapping silk (AcSp1) is the most extensible of the types of silks and has no sequence similarity to the other types. Here we report the chemical shifts for the AcSp1 199 amino acid(More)
A bacterial ribonucleotide reductase gene was found to encode four inteins and three group II introns in the oceanic N2-fixing cyanobacterium Trichodesmium erythraeum. The 13,650-bp ribonucleotide reductase gene is divided into eight extein- or exon-coding sequences that together encode a 768-amino acid mature ribonucleotide reductase protein, with 83% of(More)
Protein splicing inteins can be small as approximately 130 aa or up to approximately 600 aa when harbouring an endonuclease domain. Here we report the identification and characterization of an unusually large intein, 1650 aa long and the largest of known inteins, encoded by the replicative DNA helicase gene dnaB of the oceanic N2-fixing cyanobacterium(More)