Qing Jun Wang

Learn More
Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1–Vps34(More)
An increasing body of research on autophagy provides overwhelming evidence for its connection to diverse biological functions and human diseases. Beclin 1, the first mammalian autophagy protein to be described, appears to act as a nexus point between autophagy, endosomal, and perhaps also cell death pathways. Beclin 1 performs these roles as part of a core(More)
Autophagy is a regulated lysosomal degradation process that involves autophagosome formation and transport. Although recent evidence indicates that basal levels of autophagy protect against neurodegeneration, the exact mechanism whereby this occurs is not known. By using conditional knockout mutant mice, we report that neuronal autophagy is particularly(More)
Autophagy is a highly regulated cellular mechanism for the bulk degradation of cytoplasmic contents. It has been implicated in a variety of physiological and pathological conditions relevant to neurological diseases. However, the regulation of autophagy in neurons and its role in neuronal and axonal pathology are not yet understood. Using transgenic mice(More)
BACKGROUND Recent studies show that mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the cause of the most common inherited and some sporadic forms of Parkinson's disease (PD). The molecular mechanism underlying the pathogenic role of LRRK2 mutations in PD remains unknown. METHODOLOGY/PRINCIPAL FINDINGS Using affinity purification and mass(More)
Autophagy, a regulated cellular degradation process responsible for the turnover of long-lived proteins and organelles, has been increasingly implicated in neurological disorders. Although autophagy is mostly viewed as a stress-induced process, recent studies have indicated that it is constitutively active in central nervous system (CNS) neurons and is(More)
Autophagy is important for maintaining cellular homeostasis, and thus its deficiency is implicated in a broad spectrum of human diseases. Its role in platelet function has only recently been examined. Our biochemical and imaging studies demonstrate that the core autophagy machinery exists in platelets, and that autophagy is constitutively active in resting(More)
Autophagy is a cellular self-eating process that plays an important role in neuroprotection as well as neuronal injury and death. The detailed pathway of autophagy in these two opposing functions remains to be elucidated. Neurons are highly specialized, postmitotic cells that are typically composed of a soma (cell body), a dendritic tree, and an axon. Here,(More)
LPP (locality preserving projection), as a linear version of manifold learning algorithm, has attracted considerable interests in recent years. For real time applications, the response time is required to be as short as possible. In this paper, a new local image descriptor-LPP-HOG (histograms of oriented gradients) for fast human detection is presented. We(More)
OBJECTIVE To study the characteristics of katG, inhA, ahpC, kasA, and oxyR gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. METHODS A total of 101 isoniazid-resistant and 43 susceptible strains of Mycobacterium tuberculosis were analyzed by PCR and sequence analysis of their katG, inhA, ahpC, kasA, and oxyR genes. (More)