Qing-Jiang Pan

  • Citations Per Year
Learn More
The geometries, electronic structures, and spectroscopic properties of Ir(ppy)2(N--N)(+) (1) (N--N = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline, ppy = 2-phenylpyridine), Ir(ppy)2(N--N)(+) x F(-) (2), Ir(ppy)2(N--N)(+) x CF3COOH (3/3a), and Ir(ppy)2(N--N)(+) x CH3COO(-) (4) were investigated theoretically. The ground and the excited state geometries of(More)
The weak metal-metal interactions of Pt(II)-Ag(I)/Cu(I) have been investigated by ab initio method at MP2 level through the model complexes [trans-Pt(PH3)2(CN)2-M(PH3)2+] (M=Ag,Cu). The calculated interaction energy of 12.9 and 11.5 kcal mol(-1) for [trans-Pt(PH3)2(CN)2-Ag(PH3)2+] and [trans-Pt(PH3)2(CN)2-Cu(PH3)2+] respectively, are in the middle of the(More)
A facile precipitation method has been developed to synthesize ZnO with [bis(2-aminoethyl)amino]methyl lignin (lignin amine) that is chemically modified from low-cost pulp industrial lignin. The obtained ZnO crystallites have been characterized to exhibit a hexagonal wurtzite structure, and their sizes have been determined at ca. 24 nm (mean value). These(More)
On the basis of uranyl complexes reacting with a polypyrrolic ligand (H(4)L), we explored structures and reaction energies of a series of new binuclear uranium(VI) complexes using relativistic density functional theory. Full geometry optimizations on [(UO(2))(2)(L)], in which two uranyl groups were initially placed into the pacman ligand cavity, led to two(More)
The structures of [Pt2(pop)4]4-, [Pt2(pcp)4]4-, and related species [Pt2(pop)4X2]4- and [Pt2(pop)4]2- in the ground states (pop = P2O5H2(2-), pcp = P2O4CH4(2-), and X = I, Br, and Cl) were optimized using the second-order Møller-Plesset perturbation (MP2) method. It is shown that the Pt-Pt distances decrease in going from [Pt2(pop)4]4- to [Pt2(pop)4X2]4- to(More)
The Ru(II) complexes [Ru(bpp)(dcbpy)Cl](+) (1), [Ru(tcbpp)(bpy)Cl](+) (2), and [Ru(tc'bpp)(bpy)Cl](+) (3) (bpp = 2,6-bis(N-pyrazolyl)pyridine, dcbpy = 4,4'-dicarboxyl-bipyridine, bpy = bipyridine, tcbpp = 4-carboxyl-2,6-bis(2-carboxyl-N-pyrazolyl)pyridine, tc'bpp = 4-carboxyl-2,6-bis(4-carboxyl-N-pyrazolyl)pyridine) are studied theoretically using density(More)
To understand their photocatalytic activity and application in luminescent materials, a series of gold and rhodium phosphine complexes (mononuclear [Au(I)(PH(3))(2)](+) (1) and [Rh(I)(CNH)(2)(PH(3))(2)](+) (2); homobinuclear [Au(I)(2)(PH(2)CH(2)PH(2))(2)](2+) (3) and [Rh(I)(2)(CNH)(4)(PH(2)CH(2)PH(2))(2)](2+) (4); heterobinuclear(More)
Electronic structures and spectroscopic properties of [Pt(trpy)C[triple bond]CR](+) (trpy = 2,2', 6',2' '-terpyridine; R = H (1), CH(2)OH (2), and C(6)H(5) (3) ) are studied by ab initio and DFT methods. The ground- and excited-state structures are optimized by the MP2 and CIS methods, respectively. The absorption and emission spectra in the dichloromethane(More)
On the basis of relativistic density functional theory calculations, homo- and heterovalent binuclear uranium complexes of a polypyrrolic macrocycle in a U-O-U bridging fashion have been investigated. These complexes show a variety of oxidation states for uranium ranging from III to VI, which have been confirmed by the calculated electron-spin density on(More)
To advance the understanding of the chemical behavior of actinides, a series of trans-bis(imido) uranium(VI) complexes, U(NR)2(THF)2(cis-I2) (2R; R = H, Me, (t)Bu, Cy, and Ph), U(NR)2(THF)3(trans-I2) (3R; R = H, Me, (t)Bu, Cy, and Ph) and U(N(t)Bu)2(THF)3(cis-I2) (3(t)Bu'), were investigated using relativistic density functional theory. The axial U═N bonds(More)