Qineng Neng Ping

Learn More
The aim of this study was to design and characterize lectin-modified solid lipid nanoparticles (SLNs) containing insulin and to evaluate the potential of the lectin-modified colloidal carriers for oral administration of peptide and protein drugs. SLNs were prepared by three different methods. For comparison, some insulin-loaded SLNs were modified with wheat(More)
The overall objective of the present investigation was to demonstrate the effect of N-octyl-O-sulfate chitosan (NOSC) micelles on enhancing the oral absorption of paclitaxel (PTX) in vivo and in vitro, and identify the mechanism of this action of NOSC. In vivo, the oral bioavailability of PTX loaded in NOSC micelles (PTX-M) was 6-fold improved in comparison(More)
Site-specific delivery of drugs and therapeutics can significantly reduce drug toxicity and increase the therapeutic effect. Transferrin (Tf) is one suitable ligand to be conjugated to drug delivery systems to achieve site-specific targeting, due to its specific binding to transferrin receptors (TfR), highly expressed on the surfaces of tumor cells. Stealth(More)
A novel copolymer, poly(N-isopropylacrylamide)-chitosan (PNIPAAm-CS), was investigated for its thermosensitive in situ gel-forming properties and potential utilization for ocular drug delivery. The thermal sensitivity and low critical solution temperature (LCST) were determined by the cloud point method. PNIPAAm-CS had a LCST of 32 degrees C, which is close(More)
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release(More)
Ophthalmic drug delivery with long pre-corneal retention time and high penetration into aqueous humor and intraocular tissues is the key-limiting factor for the treatment of ocular diseases and disorders. Within this study, the conjugate of cysteine-polyethylene glycol monostearate (Cys-PEG-SA) was synthesized and was used to compose the thiolated(More)
OBJECTIVES Our previous study suggested that adrenaline (epinephrine) could be an effective absorption enhancer for ginsenoside Rg1 (Rg1). This study focused on the transport mechanism of Rg1 and the role of sodium-dependent glucose co-transporter 1 in the regulation of Rg1 uptake after exposure to adrenaline. METHODS Caco-2 cells were used as an in-vitro(More)
Paclitaxel (Taxol), PTX) is a promising anti-cancer drug and has been successfully used to treat a wide variety of cancers. Unfortunately, serious clinical side effects are associated with it, which are caused by PTX itself and non-aqueous vehicle containing Cremophor EL. Development of new formulation of PTX with better efficacy and fewer side effects is(More)
The aim of the present work was to investigate the potential utility of chitosan nanoparticles surface modified with glycyrrhizin (CS-NPs-GL) as new hepatocyte-targeted delivery vehicles. For this purpose, chitosan nanoparticles (CS-NPs) were prepared previously by ionic gelation process and glycyrrhizin was oxidized by sodium periodate to be conjugated to(More)
This research investigated the possible utilization of amphiphilic N-octyl-N-trimethyl chitosan (OTMCS) derivatives in solublization and controlled release of 10-hydroxycamptothecin (10-HCPT), a hydrophobic anticancer drug. The release behavior of the 10-HCPT-OTMCS micelles was measured and compared to that of a commercial 10-HCPT lyophilized powder in(More)