Learn More
Graphene oxides with different surface charges were fabricated from carboxylated graphene oxide by chemical modification with amino- (-NH2), poly-m-aminobenzene sulfonic acid- (-NH2/-SO3H), or methoxyl- (-OCH3) terminated functional groups. The chemically functionalized graphene oxides and the carboxylated graphene oxide were characterized by infrared(More)
Rice-like polymeric nanoparticles (NPs) composed of a new redox-responsive polymer, poly(ethylene glycol)-b-poly(lactic acid) (MPEG-SS-PLA), were prepared to carry paclitaxel (PTX) for glutathione (GSH)-regulated drug delivery. The PTX-loaded MPEG-SS-PLA NPs were fabricated using an optimized oil-in-water emulsion/solvent evaporation method. The size and(More)
Two series of apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one] derivatives, 3a-3j and 4a-4j, were synthesized. The apigenin and alkyl amines moieties of these compounds were separated by C₂ or C₃ spacers, respectively. The chemical structures of the apigenin derivatives were confirmed using ¹H-NMR, ¹³C-NMR, and electrospray ionization mass(More)
We presented an integrated microfluidic system for dynamical study of cell-microenvironmental interactions. We demonstrated its precisely spatio-temporal control in the flow direction and the multi-site staying of the fluids by groups of monolithic microfabricated valves through digital operation, aside from the regulated communication between two loci(More)
Microfluidic trapping methods create significant opportunities to establish highly controlled cell positioning and arrangement for the microscale study of numerous cellular physiological and pathological activities. However, a simple, straightforward, dynamic, and high-throughput method for cell trapping is not yet well established. In the present paper, we(More)
Integrity of the cell membrane is a basic requirement for maintaining the biological characteristics of a cell. In this study, changes in the morphology and ultrastructure of HeLa (human cervical carcinoma), HepG2 (human hepatocellular liver carcinoma), and C6 (rat glioma) cells were studied by atomic force microscopy (AFM) both before and after treatment(More)
Cell labeling using magnetic nanoparticles is an increasingly used approach in noninvasive behavior tracking, in vitro separation of cancer stem cells (CSCs), and CSC-based research in cancer therapy. However, the impact of magnetic labeling on the biological properties of targeted CSCs, such as self-renewal, proliferation, multi-differentiation, cell(More)
In this study, folate-functionalized hybrid polymeric nanoparticles (NPs) were prepared as carriers of low water solubility paclitaxel for tumor targeting, which were composed of monomethoxy-poly(ethylene glycol)-b-poly(lactide)-paclitaxel (MPEG-PLA-paclitaxel) and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-folate (TPGS-FOL). NPs with various(More)
Recent microfluidic advancements in oxygen gradients have greatly promoted controllable oxygen-sensitive cellular investigations at microscale resolution. However, multi-gradient integration in a single microfluidic device for tissue-mimicking cell investigation is not yet well established. In this study, we describe a method that can generate oxygen and(More)
Intracellular reactive oxygen species (ROS) have been extensively shown to play an important role in the regulation of cell proliferation and cell cycle progression. The effects of endogenous ROS on the proliferation and differentiation of cancer stem cells (CSCs) have received increasing attention because of the unique properties of these cells that allow(More)