#### Filter Results:

- Full text PDF available (29)

#### Publication Year

1996

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Kevin Ingersent, Qimiao Si
- Physical review letters
- 2002

Experiments in heavy-fermion metals and related theoretical work suggest that critical local-moment fluctuations can play an important role near a zero-temperature phase transition. We study such fluctuations at the quantum critical point of a Kondo impurity model in which the density of band states vanishes as /epsilon/(r) at the Fermi energy (epsilon=0).… (More)

- Q Si, S Rabello, K Ingersent, J L Smith
- Nature
- 2001

When a metal undergoes a continuous quantum phase transition, non-Fermi-liquid behaviour arises near the critical point. All the low-energy degrees of freedom induced by quantum criticality are usually assumed to be spatially extended, corresponding to long-wavelength fluctuations of the order parameter. But this picture has been contradicted by the results… (More)

A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs.… (More)

We discuss non-Fermi liquid and quantum critical behavior in heavy fermion materials, focussing on the mechanism by which the electron mass appears to diverge at the quantum critical point. We ask whether the basic mechanism for the transformation involves electron diffraction off a quantum critical spin density wave, or whether a breakdown in the composite… (More)

- Qimiao Si, Frank Steglich
- Science
- 2010

Quantum phase transitions arise in many-body systems because of competing interactions that promote rivaling ground states. Recent years have seen the identification of continuous quantum phase transitions, or quantum critical points, in a host of antiferromagnetic heavy-fermion compounds. Studies of the interplay between the various effects have revealed… (More)

We study the competition between intersite and local correlations in a spinless two-band extended Hubbard model by taking an alternative limit of infinite dimensions. We find that the intersite density fluctuations suppress the charge Kondo energy scale and lead to a Fermi liquid to non-Fermi liquid transition for repulsive on-site density-density… (More)

We further develop an extended dynamical mean field approach introduced earlier. It goes beyond the standard D = ∞ dynamical mean field theory by incorporating quantum fluctuations associated with intersite (RKKY-like) interactions. This is achieved by scaling the intersite interactions to the same power in 1/D as that for the kinetic terms. In this… (More)

We study a multiorbital model for the alkaline iron selenides K(1-x)Fe(2-y)Se(2) using a slave-spin method. With or without ordered vacancies, we identify a metal-to-Mott-insulator transition at the commensurate filling of six 3d electrons per iron ion. For Hund's couplings beyond a threshold value, this occurs via an intermediate orbital-selective Mott… (More)

We calculate the corrections to the conductivity and compressibility of a disordered metal when the mean free path is smaller than the screening length. Such a condition is shown to be realized for low densities and large disorder. Analysis of the stability of the metallic state reveals a transition to the insulating state in two-dimensions.

- P Gegenwart, T Westerkamp, +6 authors Q Si
- Science
- 2007

We report thermodynamic measurements in a magnetic-field-driven quantum critical point of a heavy fermion metal, YbRh2Si2. The data provide evidence for an energy scale in the equilibrium excitation spectrum that is in addition to the one expected from the slow fluctuations of the order parameter. Both energy scales approach zero as the quantum critical… (More)