Learn More
Charge carrier mobility is at the center of organic electronic devices. The strong couplings between electrons and nuclear motions lead to complexities in theoretical description of charge transport, which pose a major challenge for the fundamental understanding and computational design of transport organic materials. This tutorial review describes recent(More)
We developed a model system for blend polymers with electron-donating and -accepting compounds. It is found that the optimal energy conversion efficiency can be achieved when the feature size is around 10 nm. The first reaction method is used to describe the key processes (e.g., the generation, the diffusion, the dissociation at the interface for the(More)
We describe a new dynamic Monte Carlo model to simulate the operation of a polymer-blend solar cell; this model provides major improvements with respect to the one we developed earlier [J. Phys. Chem. B 114, 36 (2010)] by incorporating the Poisson equation and a charge thermoactivation mechanism. The advantage of the present approach is its capacity to deal(More)
The carrier mobility for carbon electronic materials is an important parameter for optoelectronics. We report here some recently developed theoretical tools to predict the mobility without any free parameters. Carrier scatterings with phonons and traps are the key factors in evaluating the mobility. We consider three major scattering regimes: i) where the(More)
Biomimetic asymmetric nanochannels have recently attracted increasing attention from researchers, especially in the aspect of the asymmetric wettability (a hydrophilic-hydrophobic system), which can be utilized to control the wetting behavior of aqueous media and to offer a means for guiding water motion. By using molecular dynamics simulations, a design(More)
The impact of dynamic disorder arising from the thermal fluctuations on the charge transport in organic semiconductors is studied by a multi-scale approach combining molecular dynamics, electronic structure calculations and kinetic Monte Carlo simulations for pentacene crystal of thin-film phase. It is found that for 1-D arrays, such fluctuations severely(More)
Charge transport in molecular systems and biosystems can be different from that in inorganic, rigid semiconductors. The electron-nuclear motion couplings play an important role in the former case. We have developed a theoretical scheme to employ the Marcus electron transfer theory coupled with a direct diabatic dimer model and the Brownian diffusion(More)
Density functional theory calculations are used to investigate the electronic structure of pyridine-based self-assembled monolayers (SAMs) on an Au(111) surface. We find that, when using pyridine docking groups, the bonding-induced charge rearrangements are frequently found to extend well onto the molecular backbone. This is in contrast to previous(More)
Self-assembled monolayers (SAMs) of functionalized thiols are widely used in organic (opto)electronic devices to tune the work function, Phi, of noble-metal electrodes and, thereby, to optimize the barriers for charge-carrier injection. The achievable Phi values not only depend on the intrinsic molecular dipole moment of the thiols but, importantly, also on(More)
The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem.