Learn More
MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that are important in many biological processes. Although the oncogenic and tumour-suppressive functions of several miRNAs have been characterized, the role of miRNAs in mediating tumour metastasis was addressed only recently and still remains largely unexplored. To identify potential(More)
While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand(More)
MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in(More)
Metastasis is a complex multistep process, which requires the concerted action of many genes and is the primary cause of cancer death. Both pathways that regulate metastasis enhancement and those that regulate its suppression contribute to the tumour dissemination process. To identify new metastasis suppressors, we set up a forward genetic screen in a mouse(More)
Microarrays are a new technology used to study global gene expression and to decipher biological pathways. In the current study, microarrays were used to examine gene expression patterns associated with cisplatin-mediated nephrotoxicity. Sprague-Dawley rats received either single or seven daily ip doses of cisplatin (0.5 or 1 mg/kg/day) or the inactive(More)
MicroRNAs (miRNA) are approximately 22-nucleotide noncoding RNAs that negatively regulate protein-coding gene expression in a sequence-specific manner via translational inhibition or mRNA degradation. Our recent studies showed that miRNAs exhibit genomic alterations at a high frequency and their expression is remarkably deregulated in ovarian cancer,(More)
A number of studies have shown that increased APP levels, resulting from either a genomic locus duplication or alteration in APP regulatory sequences, can lead to development of early-onset dementias, including Alzheimer's disease (AD). Therefore, understanding how APP levels are regulated could provide valuable insight into the genetic basis of AD and(More)
Nuclear factor-kappa B (NF-kappa B) is an important transcription factor that regulates survival in many cells. Activated NF-kappa B has been shown to protect some haematopoietic neoplastic cells from apoptosis. In the present study, we analysed NF-kappa B status in 13 primary samples from patients with multiple myeloma (MM) and in four myeloma cell lines(More)
LIN28 (a homologue of the Caenorhabditis elegans lin-28 gene) is an evolutionarily conserved RNA-binding protein and a master regulator controlling the pluripotency of embryonic stem cells. Together with OCT4, SOX2, and NANOG, LIN28 can reprogram somatic cells, producing induced pluripotent stem cells. Expression of LIN28 is highly restricted to embryonic(More)
In a genome-wide survey on somatic copy-number alterations (SCNAs) of long noncoding RNA (lncRNA) in 2,394 tumor specimens from 12 cancer types, we found that about 21.8% of lncRNA genes were located in regions with focal SCNAs. By integrating bioinformatics analyses of lncRNA SCNAs and expression with functional screening assays, we identified an oncogene,(More)