Learn More
We have developed a non-invasive photoacoustic ophthalmoscopy (PAOM) for in vivo retinal imaging. PAOM detects the photoacoustic signal induced by pulsed laser light shined onto the retina. By using a stationary ultrasonic transducer in contact with the eyelids and scanning only the laser light across the retina, PAOM provides volumetric imaging of the(More)
Osteoporosis is a major public health problem characterized by low bone mineral density (BMD). This replication study confirmed 38 single-nucleotide polymorphisms (SNPs) out of 139 SNPs previously reported in three recent genome-wide association studies (GWASs) in an independent US white sample. Ten SNPs achieved combined p < 3.6 × 10−4. BMD is under strong(More)
Imaging of cell nuclei plays a critical role in cancer diagnosis and prognosis. To image noninvasively cell nuclei in vivo without staining, we developed UV photoacoustic microscopy (UV-PAM), in which 266 nm wavelength UV light excites unlabeled DNA and RNA in cell nuclei to produce photoacoustic waves. We applied UV-PAM to ex vivo imaging of cell nuclei in(More)
The presence of butyltin compounds was investigated for the first time in selected lakes, rivers and coastal environments of China. Aqueous samples were pretreated by the technique of headspace solid phase micro-extraction after hydride generation with sodium tetrahydroborate (NaBH4). Quantitative measurement of tributyltin (TBT), dibutyltin (DBT) and(More)
Submicron-resolution photoacoustic microscopy (PAM) currently exists only in transmission mode, due to the technical difficulties of combining high numerical-aperture (NA) optical illumination with high NA acoustic detection. The lateral resolution of reflection-mode PAM has not reached <2 μm in the visible light range. Here we develop the first(More)
The main objective of this work was to investigate the biosorption performance of nonviable Penicillium YW 01 biomass for removal of Acid Black 172 metal-complex dye (AB) and Congo Red (CR) in solutions. Maximum biosorption capacities of 225.38 and 411.53 mg g(-1) under initial dye concentration of 800 mg L(-1), pH 3.0 and 40 °C conditions were observed for(More)
Broadband ultrasound imaging is capable of achieving superior resolution in clinical applications. An effective and easy way of manufacturing broadband transducers is desired for these applications. In this work, a graded material in which the piezoelectric plate is mechanically graded with rectangular grooves is introduced. Finite element analysis (FEA)(More)
We have successfully fabricated x(0.65PMN-0.35PT)-(1 - x)PZT (xPMN-PT-(1 - x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free(More)
At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast(More)
This paper discusses the development of a 64-element 35-MHz composite ultrasonic array. This array was designed primarily for ocular imaging applications, and features 2-2 composite elements mechanically diced out of a fine-grain high-density Navy Type VI ceramic. Array elements were spaced at a 50-micron pitch, interconnected via a custom flexible circuit(More)