Learn More
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our(More)
A new generalized multilinear regression model, termed the higher order partial least squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in(More)
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition,(More)
Steady-state visual evoked potential (SSVEP)-based brain computer-interface (BCI) is one of the most popular BCI systems. An efficient SSVEP-based BCI system in shorter time with higher accuracy in recognizing SSVEP has been pursued by many studies. This paper introduces a novel multiway canonical correlation analysis (Multiway CCA) approach to recognize(More)
—In recent years, low-rank based tensor completion, which is a higher-order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, where the ratio of missing data is extremely high. In this paper, we consider " smoothness "(More)
The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially(More)
Non-negative Canonical Polyadic decomposition (NCPD) and non-negative Tucker decomposition (NTD) were compared for extracting the multi-domain feature of visual mismatch negativity (vMMN), a small event-related potential (ERP), for the cognitive research. Since signal-to-noise ratio in vMMN is low, NTD outperformed NCPD. Moreover, we proposed an approach to(More)
Single trial electroencephalogram (EEG) classification is essential in developing brain-computer interfaces (BCIs). However, popular classification algorithms, e.g., common spatial patterns (CSP), usually highly depend on the prior neurophysiologic knowledge for noise removing, although this knowledge is not always known in practical applications. In this(More)