Learn More
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for <italic>CP rank(More)
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our(More)
A new generalized multilinear regression model, termed the higher order partial least squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in(More)
This paper presents a new approach to the feature extraction for reliable heart rhythm recognition. This system of classification is comprised of three components including data preprocessing, feature extraction and classification of ECG signals. Two different feature extraction methods are applied together to obtain the feature vector of ECG data. The(More)
Steady-state visual evoked potential (SSVEP)-based brain computer-interface (BCI) is one of the most popular BCI systems. An efficient SSVEP-based BCI system in shorter time with higher accuracy in recognizing SSVEP has been pursued by many studies. This paper introduces a novel multiway canonical correlation analysis (Multiway CCA) approach to recognize(More)
We present a novel framework for tensor valued Gaussian processes (GP) regression, which exploits a covariance function defined on tensor representation of data inputs. In this way, we bring together the powerful GP methods supported by Bayesian inference and higher-order tensor analysis techniques into one framework. This enables us to account for the(More)
In addition to helping better understand how the human brain works, the brain-computer interface neuroscience paradigm allows researchers to develop a new class of bioengineering control devices and robots, offering promise for rehabilitation and other medical applications as well as exploring possibilities for advanced human-computer interfaces.
The widespread use of multisensor technology and the emergence of big data sets have highlighted the limitations of standard flat-view matrix models and the necessity to move toward more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift toward models that are essentially(More)
Non-negative Canonical Polyadic decomposition (NCPD) and non-negative Tucker decomposition (NTD) were compared for extracting the multi-domain feature of visual mismatch negativity (vMMN), a small event-related potential (ERP), for the cognitive research. Since signal-to-noise ratio in vMMN is low, NTD outperformed NCPD. Moreover, we proposed an approach to(More)
Single trial electroencephalogram (EEG) classification is essential in developing brain-computer interfaces (BCIs). However, popular classification algorithms, e.g., common spatial patterns (CSP), usually highly depend on the prior neurophysiologic knowledge for noise removing, although this knowledge is not always known in practical applications. In this(More)