Learn More
The widespread use of multisensor technology and the emergence of big data sets have highlighted the limitations of standard flat-view matrix models and the necessity to move toward more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift toward models that are essentially(More)
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for <italic>CP rank(More)
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our(More)
A new generalized multilinear regression model, termed the higher order partial least squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in(More)
Integration of brain-computer interface (BCI) technique and assistive device is one of chief and promising applications of BCI system. With BCI technique, people with disabilities do not have to communicate with external environment through traditional and natural pathways like peripheral nerves and muscles, and could achieve it only by their brain(More)
This paper presents a new approach to the feature extraction for reliable heart rhythm recognition. This system of classification is comprised of three components including data preprocessing, feature extraction and classification of ECG signals. Two different feature extraction methods are applied together to obtain the feature vector of ECG data. The(More)
Steady-state visual evoked potential (SSVEP)-based brain computer-interface (BCI) is one of the most popular BCI systems. An efficient SSVEP-based BCI system in shorter time with higher accuracy in recognizing SSVEP has been pursued by many studies. This paper introduces a novel multiway canonical correlation analysis (Multiway CCA) approach to recognize(More)
—With the increasing availability of various sensor technologies , we now have access to large amounts of multi-block (also called multi-set, multi-relational, or multi-view) data that need to be jointly analyzed to explore their latent connections. Various component analysis methods have played an increasingly important role for the analysis of such(More)
We present a novel framework for tensor valued Gaussian processes (GP) regression, which exploits a covariance function defined on tensor representation of data inputs. In this way, we bring together the powerful GP methods supported by Bayesian inference and higher-order tensor analysis techniques into one framework. This enables us to account for the(More)