Qiaobin Xiao

Learn More
We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb) respectively. Deletion of lmo2185 in the srtB region reduced listerial [(59)(More)
Listeria monocytogenes, the causative agent of listeriosis, is a virulent foodborne Gram-positive bacterial pathogen, with 20-30% mortality. It has a broad ability to transport iron, either in the form of ferric siderophores, or by extracting it from mammalian iron binding proteins. In this review we focus on the mechanisms of ferric siderophore and haem(More)
The Escherichia coli iron transporter, FepA, has a globular N terminus that resides within a transmembrane beta-barrel formed by its C terminus. We engineered 25 cysteine substitution mutations at different locations in FepA and modified their sulfhydryl side chains with fluorescein maleimide in live cells. The reactivity of the Cys residues changed,(More)
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the(More)
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the(More)
We studied the reactivity of 35 genetically engineered Cys sulphydryl groups at different locations in Escherichia coli FepA. Modification of surface loop residues by fluorescein maleimide (FM) was strongly temperature-dependent in vivo, whereas reactivity at other sites was much less affected. Control reactions with bovine serum albumin showed that the(More)
Methicillin-resistant Staphylococcus aureus (MRSA), an important human pathogen, has evolved an inducible mechanism for resistance to β-lactam antibiotics. We report herein that the integral membrane protein BlaR1, the β-lactam sensor/signal transducer protein, is phosphorylated on exposure to β-lactam antibiotics. This event is critical to the onset of the(More)
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which has in vitro and in vivo activities against methicillin-resistant S. aureus (MRSA). We report herein that MmpL, a putative member of(More)
  • 1