Learn More
OLIG1 and OLIG2 are basic-helix-loop-helix (bHLH) transcription factors expressed in the pMN domain of the spinal cord, which sequentially generates motoneurons and oligodendrocytes. In Olig1/2 double-mutant mice, motoneurons are largely eliminated, and oligodendrocyte differentiation is abolished. Lineage tracing data suggest that Olig1(-/-)2(-/-) pMN(More)
Basic helix-loop-helix (bHLH) transcription factors have been identified for neurons and their precursors but not for glial cells. We have identified two bHLH factors, Oligo1 and Oligo2, that are specifically expressed in zones of neuroepithelium from which oligodendrocyte precursors emerge, as well as in the precursors themselves. Expression of Oligo2 in(More)
Olig2, a basic helix-loop-helix (bHLH) transcription factor, is expressed in a restricted domain of the spinal cord ventricular zone that sequentially generates motoneurons and oligodendrocytes. Just prior to oligo-dendrocyte precursor formation, the domains of Olig2 and Nkx2.2 expression switch from being mutually exclusive to overlapping, and Neurogenins1(More)
One goal of regenerative medicine is to instructively convert adult cells into other cell types for tissue repair and regeneration. Although isolated examples of adult cell reprogramming are known, there is no general understanding of how to turn one cell type into another in a controlled manner. Here, using a strategy of re-expressing key developmental(More)
The mammalian pancreas is constructed during embryogenesis by multipotent progenitors, the identity and function of which remain poorly understood. We performed genome-wide transcription factor expression analysis of the developing pancreas to identify gene expression domains that may represent distinct progenitor cell populations. Five discrete domains(More)
The airways are conduits that transport atmospheric oxygen to the distal alveolus. Normally, airway mucous cells are rare. However, diseases of the airway are often characterized by mucous metaplasia, in which there are dramatic increases in mucous cell numbers. As the Notch pathway is known to regulate cell fate in many contexts, we misexpressed the active(More)
The molecular mechanism(s) that regulate apoptosis by caspase inhibition remain poorly understood. The main endogenous inhibitors are members of the IAP family and are exemplified by XIAP, which regulates the initiator caspase-9, and the executioner caspases-3 and -7. We report the crystal structure of the second BIR domain of XIAP (BIR2) in complex with(More)
Astrocytes constitute the most abundant cell type in the central nervous system (CNS) and play diverse functional roles, but the ontogenetic origins of this phenotypic diversity are poorly understood. We have investigated whether positional identity, a fundamental organizing principle governing the generation of neuronal subtype diversity, is also relevant(More)
The effects of Wnt7b on lung development were examined using a conditional Wnt7b-null mouse. Wnt7b-null lungs are markedly hypoplastic, yet display largely normal patterning and cell differentiation. In contrast to findings in prior hypomorphic Wnt7b models, we find decreased replication of both developing epithelium and mesenchyme, without abnormalities of(More)
The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) plays pivotal roles in physiology and pathophysiology. Constitutive or hypoxia-induced HIF-1alpha overexpression is observed in many types of cancers including prostate adenocarcinoma, in which it is associated with resistance to apoptosis and therapeutic agents. BCL-xL, a(More)