Qianqian Shi

Learn More
The signal from organelle to nucleus, namely retrograde regulation of nuclear gene expression, was largely unknown. Due to the nuclear-cytoplasmic incompatibility in cytoplasmic male-sterile (CMS) plants, we employed CMS Brassica juncea to investigate the retrograde regulation of nuclear gene expression in this study. We studied how reduced BjRCE1 gene(More)
Chalcone isomerase (CHI) is one of the key enzymes in the flavonoid and anthocyanin biosynthesis pathway catalyzing the stereospecific isomerization of chalcones into their corresponding (2S)-flavanones. In this study, to investigate the role of CHI in tree peony flower coloration mechanism, a CHI gene was isolated from Paeonia suffruticosa cv. Guan Shi Mo(More)
Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity.(More)
Tree peony (Paeonia suffruticosa Andrews) is a very famous traditional ornamental plant in China. P. delavayi is a species endemic to Southwest China that has aroused great interest from researchers as a precious genetic resource for flower color breeding. However, the current understanding of the molecular mechanisms of flower pigmentation in this plant is(More)
We report on self-assembled nanocube-based plasmene nanosheets as new surface-enhanced Raman scattering (SERS) substrates toward direct identification of a trace amount of drugs sitting on topologically complex real-world surfaces. The uniform nanocube arrays (superlattices) led to low spatial SERS signal variances (∼2%). Unlike conventional SERS substrates(More)
Anisotropic plasmonic nanoparticles have been successfully used as constituent elements for growing ordered nanoparticle arrays. However, orientational control over their spatial ordering remains challenging. Here, we report on a self-assembled two-dimensional (2D) nanoparticle liquid crystalline superstructure (NLCS) from bipyramid gold nanoparticles(More)
  • 1