Qianqian Fang

Learn More
We report a general purpose mesh generator for creating finite-element surface or volumetric mesh from 3D binary or gray-scale medical images. This toolbox incorporates a number of existing free mesh processing utilities and enables researchers to perform a range of mesh processing tasks for image-based mesh generation, including raw image processing,(More)
RATIONALE AND OBJECTIVES We have developed a microwave tomography system for experimental breast imaging. MATERIALS AND METHODS In this article, we illustrate a strategy for optimizing the coupling liquid for the antenna array based on in vivo measurement data. We present representative phantom experiments to illustrate the imaging system's ability to(More)
We describe a fast mesh-based Monte Carlo (MC) photon migration algorithm for static and time-resolved imaging in 3D complex media. Compared with previous works using voxel-based media discretization, a mesh-based approach can be more accurate in modeling targets with curved boundaries or locally refined structures. We implement an efficient ray-tracing(More)
We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated(More)
We report a parallel Monte Carlo algorithm accelerated by graphics processing units (GPU) for modeling time-resolved photon migration in arbitrary 3D turbid media. By taking advantage of the massively parallel threads and low-memory latency, this algorithm allows many photons to be simulated simultaneously in a GPU. To further improve the computational(More)
There is an increasing need for quantitative and computationally affordable models for analyzing tissue metabolism and hemodynamics in microvascular networks. In this work, we develop a hybrid model to solve for the time-varying oxygen advection-diffusion equation in the vessels and tissue. To obtain a three-dimensional temporal evolution of tissue oxygen(More)
The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior(More)
PURPOSE To explore the optical and physiologic properties of normal and lesion-bearing breasts by using a combined optical and digital breast tomosynthesis (DBT) imaging system. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained for this HIPAA-compliant study. Combined optical and tomosynthesis imaging(More)
An efficient Gauss-Newton iterative imaging technique utilizing a three-dimensional (3-D) field solution coupled to a two-dimensional (2-D) parameter estimation scheme (3-D/2-D) is presented for microwave tomographic imaging in medical applications. While electromagnetic wave propagation is described fully by a 3-D vector field, a 3-D scalar model has been(More)
Near infrared dynamic diffuse optical tomography measurements of breast hemodynamics during fractional mammographic compression offer a novel contrast mechanism for detecting breast cancer and monitoring chemotherapy. Tissue viscoelastic relaxation during the compression period leads to a slow reduction in the compression force and reveals biomechanical and(More)