Learn More
A large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common(More)
A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient(More)
Domain adaptation allows knowledge from a source domain to be transferred to a different but related target domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we first propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries(More)
Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news(More)
This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide(More)
Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of users publishing sentiment data (e.g., reviews, blogs). Although traditional classification algorithms can be used to train sentiment classifiers from manually labeled text data, the labeling work can be time-consuming and expensive. Meanwhile, users(More)
Gene-gene interactions have long been recognized to be fundamentally important for understanding genetic causes of complex disease traits. At present, identifying gene-gene interactions from genome-wide case-control studies is computationally and methodologically challenging. In this paper, we introduce a simple but powerful method, named "BOolean(More)
Memory-based approaches for collaborative filtering identify the similarity between two users by comparing their ratings on a set of items. In the past, the memory-based approach has been shown to suffer from two fundamental problems: data sparsity and difficulty in scalability. Alternatively, the model-based approach has been proposed to alleviate these(More)