Learn More
UNLABELLED Protein complexes play a critical role in many biological processes. Identifying the component proteins in a protein complex is an important step in understanding the complex as well as the related biological activities. This paper addresses the problem of predicting protein complexes from the protein-protein interaction (PPI) network of one(More)
BACKGROUND It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages. RESULTS The paper(More)
BACKGROUND Recently, a number of high-resolution genome-wide maps of nucleosome locations in S. cerevisiae have been derived experimentally. However, nucleosome positions are determined in vivo by the combined effects of numerous factors. Consequently, nucleosomes are not simple static units, which may explain the discrepancies in reported nucleosome(More)
Eukaryotic genomes are packaged into chromatin by histone proteins whose chemical modification can profoundly influence gene expression. The histone modifications often act in combinations, which exert different effects on gene expression. Although a number of experimental techniques and data analysis methods have been developed to study histone(More)
MOTIVATION The intrinsic DNA sequence is an important determinant of nucleosome positioning. Some DNA sequence patterns can facilitate nucleosome formation, while others can inhibit nucleosome formation. Nucleosome positioning influences the overall rate of sequence evolution. However, its impacts on specific patterns of sequence evolution are still poorly(More)
Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So(More)
BACKGROUND Neighboring gene pairs in the genome of Saccharomyces cerevisiae have a tendency to be expressed at the same time. The distribution of histone modifications along chromatin fibers is suggested to be an important mechanism responsible for such coexpression. However, the extent of the contribution of histone modifications to the coexpression of(More)
BACKGROUND ATP-dependent chromatin remodeling and the covalent modification of histones play central roles in determining chromatin structure and function. Although several specific interactions between these two activities have been elaborated, the global landscape remains to be elucidated. RESULTS In this paper, we have developed a computational method(More)
Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory function of the TF. However, how nucleosomal context of TFBSs influences TF binding and subsequent gene regulation remains to be elucidated. Using(More)
BACKGROUND Most genes are not affected when any transcription factor (TF) is knocked out, indicating that they have robust transcriptional regulatory program. Yet the mechanism underlying robust transcriptional regulatory program is less clear. RESULTS Here, we studied the cause and effect of robust transcriptional regulatory program. We found that(More)