Learn More
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via(More)
Band selection for remotely sensed image data is an effective means to mitigate the curse of dimensionality. Many criteria have been suggested in the past for optimal band selection. In this paper, a joint band-prioritization and band-decorrelation approach to band selection is considered for hyperspectral image classification. The proposed band(More)
Band selection is a common approach to reduce the data dimensionality of hyperspectral imagery. It extracts several bands of importance in some sense by taking advantage of high spectral correlation. Driven by detection or classification accuracy, one would expect that, using a subset of original bands, the accuracy is unchanged or tolerably degraded,(More)
Principal component analysis (PCA) is deployed in JPEG2000 to provide spectral decorrelation as well as spectral dimensionality reduction. The proposed scheme is evaluated in terms of rate-distortion performance as well as in terms of information preservation in an anomaly-detection task. Additionally, the proposed scheme is compared to the common approach(More)
The goal of principal components analysis (PCA) is to find principal components in accordance with maximum variance of a data matrix. However, it has been shown recently that such variance-based principal components may not adequately represent image quality. As a result, a modified PCA approach based on maximization of SNR was proposed. Called maximum(More)
Band selection is often applied to reduce the dimensionality of hyperspectral imagery. When the desired object information is known, it can be achieved by finding the bands that contain the most object information. It is expected that these bands can provide an overall satisfactory detection and classification performance. In this letter, we propose a new(More)
It is of great interest in exploiting texture information for classification of hyperspectral imagery (HSI) at high spatial resolution. In this paper, a classification paradigm to exploit rich texture information of HSI is proposed. The proposed framework employs local binary patterns (LBPs) to extract local image features, such as edges, corners, and(More)
  • Qian Du
  • IEEE Geoscience and Remote Sensing Letters
  • 2007
In this letter, we present a modified Fisher's linear discriminant analysis (MFLDA) for dimension reduction in hyperspectral remote sensing imagery. The basic idea of the Fisher's linear discriminant analysis (FLDA) is to design an optimal transform, which can maximize the ratio of between-class to within-class scatter matrices so that the classes can be(More)