Learn More
Secreted Wnt morphogens are signaling molecules essential for embryogenesis, pathogenesis, and regeneration and require distinct modifications for secretion, gradient formation, and activity. Whether Wnt proteins can be posttranslationally inactivated during development and homeostasis is unknown. Here we identify, through functional cDNA screening, a(More)
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site.(More)
Recently, we reported a useful assay for the determination of yeast Hsp90 ATPase activity. Using this assay, high-throughput screening of approximately 10,000 compounds was performed to determine the feasibility of this assay on large scale. Results from high-throughput screening indicated that the assay was reproducible (av Z-factor = 0.80) and identified(More)
Methionine aminopeptidase (MetAP) carries out an essential posttranslational modification of nascent proteins by removing the initiator methionine and is recognized as a potential target for developing antibacterial, antifungal, and anticancer agents. We have established an Escherichia coli expression system for human type I MetAP (HsMetAP1) and(More)
Impromidine (IMP) and arpromidine (ARP)-derived guanidines are more potent and efficacious guinea pig (gp) histamine H(2)-receptor (gpH(2)R) than human (h) H(2)R agonists and histamine H(1)-receptor (H(1)R) antagonists with preference for hH(1)R relative to gpH(1)R. We examined N(G)-acylated imidazolylpropylguanidines (AIPGs), which are less basic than(More)
Natural product-derived bengamides possess potent antiproliferative activity and target human methionine aminopeptidases for their cellular effects. Using bengamides as a template, several derivatives were designed and synthesized as inhibitors of methionine aminopeptidases of Mycobacterium tuberculosis, and initial antitubercular activity were observed.(More)
Methionine aminopeptidase (MetAP) catalyzes the N-terminal methionine excision from the majority of newly synthesized proteins, which is an essential cotranslational process required for cell survival. As such, MetAP has become an appealing target for the development of antimicrobial therapeutics with novel mechanisms of action. By screening a library of(More)
Methionine aminopeptidase (MetAP) carries out an important cotranslational N-terminal methionine excision of nascent proteins and represents a potential target to develop antibacterial and antitubercular drugs. We cloned one of the two MetAPs in Mycobacterium tuberculosis (MtMetAP1c from the mapB gene) and purified it to homogeneity as an apoenzyme. Its(More)
Methionine aminopeptidase (MetAP) carries out the cotranslational N-terminal methionine excision and is essential for bacterial survival. Mycobacterium tuberculosis expresses two MetAPs, MtMetAP1a and MtMetAP1c, at different levels in growing and stationary phases, and both are potential targets to develop novel antitubercular therapeutics. Recombinant(More)
Drug resistance in gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential(More)