Learn More
p53 is a well known tumor suppressor. We show that p53 also regulates osteoblast differentiation, bone formation, and osteoblast-dependent osteoclast differentiation. Indeed, p53(-/-) mice display a high bone mass phenotype, and p53(-/-) osteoblasts show accelerated differentiation, secondary to an increase in expression of the osteoblast differentiation(More)
TAZ (WWTR1), identified as a 14-3-3 binding protein with a PDZ binding motif, modulates mesenchymal stem cell differentiation. We now show that TAZ plays a critical role in the migration, invasion, and tumorigenesis of breast cancer cells. TAZ is conspicuously expressed in human breast cancer cell lines in which its expression levels generally correlate(More)
We demonstrate here that Chinese hamster ovary cells stably expressing PRL-3, a M(r) 20000 prenylated protein tyrosine phosphatase, or its relative, PRL-1, exhibit enhanced motility and invasive activity. A catalytically inactive PRL-3 mutant has significantly reduced migration-promoting activity. We observe that PRL-3 is associated with diverse membrane(More)
PRL-3 is a metastasis-associated phosphatase. We and others have shown that its overexpression increases cell motility and invasiveness. These phenotypic changes are reminiscent of the epithelial-mesenchymal transition (EMT) that occurs during embryonic development and oncogenesis. The EMT is a complex process that converts epithelia into migratory(More)
Myeloid-derived suppressor cells (MDSC) play a key immunosuppressive role in various types of cancer, including head and neck squamous cell carcinoma (HNSCC). In this study, we characterized CD14+HLA-DR(-/lo) cells sorted from the tumors, draining lymph nodes, and peripheral blood of HNSCC patients. CD14+HLA-DR(-/lo) cells were phenotyped as CD11b+, CD33+,(More)
Sprouty (Spry) proteins were found to be endogenous inhibitors of the Ras/mitogen-activated protein kinase pathway that play an important role in the remodeling of branching tissues. We investigated Spry expression levels in various cancers and found that Spry1 and Spry2 were down-regulated consistently in breast cancers. Such prevalent patterns of(More)
The Hippo pathway defined originally in Drosophila melanogaster is conserved in mammals. The fly core components Hippo, Sav, Wts, and Mats are conserved in mammals as Mst1/2, WW45, LATS1/2, and Mob1. The pathway impinges on transcriptional coactivator Yorkie in fly and YAP in mammals to coordinate cell proliferation and apoptosis. Several recent(More)
Overexpression of phosphatase of regenerating liver (PRL)-3 is associated with the progression of diverse human cancers. We show that the overexpression of PRL-3 protein is not directly associated with its transcript levels, indicating the existence of an underlying posttranscriptional regulation. The 5' untranslanted region (UTR) of PRL-3 mRNA possesses(More)
The Hippo pathway restricts the activity of transcriptional coactivators TAZ (WWTR1) and YAP. TAZ and YAP are reported to be overexpressed in various cancers, however, their prognostic significance in colorectal cancers remains unstudied. The expression levels of TAZ and YAP, and their downstream transcriptional targets, AXL and CTGF, were extracted from(More)
VAMP4 is enriched in the trans-Golgi network (TGN) and functions in traffic from the early and recycling endosomes to the TGN, but its trafficking itinerary is unknown. Cells stably expressing TGN-enriched VAMP4 C-terminally-tagged with EGFP (VAMP4-EGFP) are able to internalize and transport EGFP antibody efficiently to the TGN, suggesting that VAMP4-EGFP(More)