Learn More
The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train data. A modified generalized linear model (GLM) with(More)
As the amount of experimental data made publicly accessible has gradually increased in recent years, it is now possible to reconsider many of the longstanding questions in neuroscience. In this paper, we present an efficient frame-work for reconstructing the functional connectivity from the spike train data curated from the Collaborative Research in(More)
In this paper, we present an efficient framework to study the directional interactions within the multiple-input multiple-output (MIMO) biological neural network from spiketrain data. We used an efficient generalized linear model (GLM) with Laguerre basis functions to model a MIMO neural system, and developed an Effective Connectivity Matrix (ECM) to(More)
This paper presents an investigation into the cortico-muscular relationship during a grasping task by evaluating the information transfer between EEG and EMG signals. Information transfer was computed via a non-linear model-free measure, transfer entropy (TE). To examine the cross-frequency interaction, TEs were computed after the times series were(More)
In this letter, a Hierarchical Parametric Empirical Bayes model is proposed to model spike count data. We have integrated Generalized Linear Models (GLMs) and empirical Bayes theory to simultaneously provide three advantages: (1) a model of over-dispersion of spike count values; (2) reduced MSE in estimation when compared to using the maximum likelihood(More)
  • 1