Learn More
The interactions between proteins, DNA, and RNA in living cells constitute molecular networks that govern various cellular functions. To investigate the global dynamical properties and stabilities of such networks, we studied the cell-cycle regulatory network of the budding yeast. With the use of a simple dynamical model, it was demonstrated that the(More)
Biological functions in living cells are controlled by protein interaction and genetic networks. These molecular networks should be dynamically stable against various fluctuations which are inevitable in the living world. In this paper, we propose and study a stochastic model for the network regulating the cell cycle of the budding yeast. The stochasticity(More)
Ge Lin,1,2,4,5 Yubin Xie,3,5 Qi OuYang,1,5 Xiaobing Qian,4 Pingyuan Xie,1 Xiaoying Zhou,4 Bo Xiong,4 Yueqiu Tan,1,4 Wen Li,1,4 Leiyu Deng,1 Jing Zhou,1 Di Zhou,1 Lili Du,1 Dehua Cheng,4 Yi Liao,4 Yifan Gu,1 Shuoping Zhang,4 Tiancheng Liu,1 Yi Sun,1,2 and Guangxiu Lu1,2,4,* 1Institute of Reproductive & Stem Cell Engineering, Central South University,(More)
The proteasome is the major engine of protein degradation in all eukaryotic cells. At the heart of this machine is a heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitylated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. Using cryoelectron(More)
Attribution of biological robustness to the specific structural properties of a regulatory network is an important yet unsolved problem in systems biology. It is widely believed that the topological characteristics of a biological control network largely determine its dynamic behavior, yet the actual mechanism is still poorly understood. Here, we define a(More)
A search has been performed for the Standard Model Higgs boson in the data sample collected with the ALEPH detector at LEP, at centre-of-mass energies up to 209 GeV. An excess of 3 σ beyond the background expectation is found, consistent with the production of the Higgs boson with a mass near 114 GeV/c 2. Much of this excess is seen in the four-jet(More)
Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic(More)
Biomolecular networks have to perform their functions robustly. A robust function may have preferences in the topological structures of the underlying network. We carried out an exhaustive computational analysis on network topologies in relation to a patterning function in Drosophila embryogenesis. We found that whereas the vast majority of topologies can(More)
Drug molecules not only interact with specific targets, but also alter the state and function of the associated biological network. How to design drugs and evaluate their functions at the systems level becomes a key issue in highly efficient and low-side-effect drug design. The arachidonic acid metabolic network is the network that produces inflammatory(More)