Learn More
Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated(More)
Soliton mode locking and femtosecond pulse generation have recently been demonstrated in high-Q optical microcavities and provide a new way to miniaturize frequency comb systems, as well as create integrated comb systems on a chip. However, triggering the mode-locking process is complicated by a well-known thermal hysteresis that can destabilize the(More)
Dissipative Kerr cavity solitons experience a so-called self-frequency shift (SFS) as a result of Raman interactions. The frequency shift has been observed in several microcavity systems. The Raman process has also been shown numerically to influence the soliton pumping efficiency. Here, a perturbed Lagrangian approach is used to derive simple analytical(More)
Influenced by global financial crisis and expanding enrolment of higher education, college students face serious employment and re-employment situation. College students must own core competence if they want to get success in employment competition. The professional training model adapting to market needs is to develop comprehensive professionals with(More)
Telomeres generally consist of short repeats of minisatellite DNA sequences and are useful in chromosome identification and karyotype analysis. To date, telomeres have not been characterized in the economically important brown seaweed Saccharina japonica, thus its full cytogenetic research and genetic breeding potential has not been realized. Herein, the(More)
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr(More)