Qadir K. Timerghazin

  • Citations Per Year
Learn More
The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This(More)
To address a long-standing problem of finding efficient reactions for chemical labeling of protein-based S-nitrosothiols (RSNOs), we computationally explored hitherto unknown (3+2) cycloaddition RSNO reactions with alkynes and alkenes. Nonactivated RSNO cycloaddition reactions have high activation enthalpy (>20 kcal/mol at the CBS-QB3 level) and compete(More)
We have investigated the photodissociation dynamics of NaI(H(2)O)(n) [n = 1-4] clusters using the molecular dynamics with quantum transitions method and a quantum mechanics/molecular mechanics description of NaI(H(2)O)(n), which involves a semiempirical valence-bond approach to describe the NaI electronic structure and classical solvent-solvent and(More)
High-level ab initio calculations employing the CCSD and CCSD(T) coupled cluster methods with a series of systematically convergent correlation-consistent basis sets have been performed to obtain accurate molecular geometry and energetic properties of the simplest S-nitrosothiol (RSNO), HSNO. The properties of the S-N bond, which are central to the(More)
Thionitrous acid (HSNO), the smallest S-nitrosothiol, has been identified as a potential biologically active molecule that connects the biochemistries of two important gasotransmitters, nitric oxide (NO) and hydrogen sulfide (H2S). Here, we computationally explore possible isomerization reactions of HSNO that may occur under physiological conditions using(More)
A resonance representation of the electronic structure of S-nitrosothiols as a combination of the conventional R-S-N=O structure, a zwitterionic structure R-S+=N-O-, and a RS-/NO+ ion pair is proposed. The resonance forms are employed to predict and rationalize the structural and conformational properties of RSNOs, their interaction with Lewis acids, and(More)
Acetonitrile molecules are known for their intriguing ability to accommodate an excess electron in either a diffuse dipole-bound orbital, away from the valence electrons, or in its valence orbitals, depending on the environment. In this work, we report a computational investigation of the monomer and dimer acetonitrile anions, with the main goal of gaining(More)
Based on ab initio molecular dynamics simulations, we show that small nanoclusters of about 1 nm size spontaneously generated in a low-temperature silane plasma do not possess tetrahedral structures, but are ultrastable. Apparently small differences in the cluster structure result in substantial modifications in their electric, magnetic, and optical(More)
Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from(More)
Combining classical molecular dynamics simulations with high level, multiconfigurational ab initio calculations, we demonstrate that even relatively mild collisions between ground state oxygen molecules can readily lead to the formation of highly reactive singlet oxygen molecules via a novel "ladder climbing" mechanism. We employ our findings to shed some(More)