Learn More
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five(More)
The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the(More)
We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we(More)
The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal(More)
Traditional and molecular typing schemes for the characterization of pathogenic microorganisms are poorly portable because they index variation that is difficult to compare among laboratories. To overcome these problems, we propose multilocus sequence typing (MLST), which exploits the unambiguous nature and electronic portability of nucleotide sequence data(More)
We use results from positive matrix factorization (PMF) analysis of 15 urban aerosol mass spectrometer (AMS) data sets to derive simple methods for estimating major organic aerosol (OA) component concentrations in real time. PMF analysis extracts mass spectral (MS) profiles and mass concentrations for key OA components such as hydrocarbon-like OA (HOA),(More)
The human CYP2A subfamily comprises three genes, CYP2A6, CYP2A7, and CYP2A13. CYP2A6 is active toward many carcinogens and is the major coumarin 7-hydroxylase and nicotine C-oxidase in the liver, whereas CYP2A7 is not functional. The function of CYP2A13 has not been characterized. In this study, a CYP2A13 cDNA was prepared by RNA-PCR from human nasal mucosa(More)
Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by(More)
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method(More)
The metabolic activation of two known olfactory mucosal (OM) toxicants, acetaminophen (AP) and 2,6-dichlorobenzonitrile (DCBN), was examined with mouse liver and OM microsomes and purified, heterologously expressed mouse CYP2A5 and CYP2G1. In reconstituted systems, both isoforms were active in metabolizing DCBN and AP to metabolites that formed protein(More)